Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre P. Massion is active.

Publication


Featured researches published by Pierre P. Massion.


Journal of Clinical Oncology | 2012

ROS1 Rearrangements Define a Unique Molecular Class of Lung Cancers

Kristin Bergethon; Alice T. Shaw; Sai-Hong Ignatius Ou; Ryohei Katayama; Christine M. Lovly; Nerina T. McDonald; Pierre P. Massion; Christina Siwak-Tapp; Adriana Gonzalez; Rong Fang; Eugene J. Mark; Julie M. Batten; Haiquan Chen; Keith D. Wilner; Eunice L. Kwak; Jeffrey W. Clark; David P. Carbone; Hongbin Ji; Jeffrey A. Engelman; Mari Mino-Kenudson; William Pao; A. John Iafrate

PURPOSE Chromosomal rearrangements involving the ROS1 receptor tyrosine kinase gene have recently been described in a subset of non-small-cell lung cancers (NSCLCs). Because little is known about these tumors, we examined the clinical characteristics and treatment outcomes of patients with NSCLC with ROS1 rearrangement. PATIENTS AND METHODS Using a ROS1 fluorescent in situ hybridization (FISH) assay, we screened 1,073 patients with NSCLC and correlated ROS1 rearrangement status with clinical characteristics, overall survival, and when available, ALK rearrangement status. In vitro studies assessed the responsiveness of cells with ROS1 rearrangement to the tyrosine kinase inhibitor crizotinib. The clinical response of one patient with ROS1-rearranged NSCLC to crizotinib was investigated as part of an expanded phase I cohort. RESULTS Of 1,073 tumors screened, 18 (1.7%) were ROS1 rearranged by FISH, and 31 (2.9%) were ALK rearranged. Compared with the ROS1-negative group, patients with ROS1 rearrangements were significantly younger and more likely to be never-smokers (each P < .001). All of the ROS1-positive tumors were adenocarcinomas, with a tendency toward higher grade. ROS1-positive and -negative groups showed no difference in overall survival. The HCC78 ROS1-rearranged NSCLC cell line and 293 cells transfected with CD74-ROS1 showed evidence of sensitivity to crizotinib. The patient treated with crizotinib showed tumor shrinkage, with a near complete response. CONCLUSION ROS1 rearrangement defines a molecular subset of NSCLC with distinct clinical characteristics that are similar to those observed in patients with ALK-rearranged NSCLC. Crizotinib shows in vitro activity and early evidence of clinical activity in ROS1-rearranged NSCLC.


The Lancet | 2003

Proteomic patterns of tumour subsets in non-small-cell lung cancer.

Kiyoshi Yanagisawa; Yu Shyr; Baogang J. Xu; Pierre P. Massion; Paul Larsen; Bill C. White; John Roberts; Mary E. Edgerton; Adriana Gonzalez; Sorena Nadaf; Jason H. Moore; Richard M. Caprioli; David P. Carbone

BACKGROUND Proteomics-based approaches complement the genome initiatives and may be the next step in attempts to understand the biology of cancer. We used matrix-assisted laser desorption/ionisation mass spectrometry directly from 1-mm regions of single frozen tissue sections for profiling of protein expression from surgically resected tissues to classify lung tumours. METHODS Proteomic spectra were obtained and aligned from 79 lung tumours and 14 normal lung tissues. We built a class-prediction model with the proteomic patterns in a training cohort of 42 lung tumours and eight normal lung samples, and assessed their statistical significance. We then applied this model to a blinded test cohort, including 37 lung tumours and six normal lung samples, to estimate the misclassification rate. FINDINGS We obtained more than 1600 protein peaks from histologically selected 1 mm diameter regions of single frozen sections from each tissue. Class-prediction models based on differentially expressed peaks enabled us to perfectly classify lung cancer histologies, distinguish primary tumours from metastases to the lung from other sites, and classify nodal involvement with 85% accuracy in the training cohort. This model nearly perfectly classified samples in the independent blinded test cohort. We also obtained a proteomic pattern comprised of 15 distinct mass spectrometry peaks that distinguished between patients with resected non-small-cell lung cancer who had poor prognosis (median survival 6 months, n=25) and those who had good prognosis (median survival 33 months, n=41, p<0.0001). INTERPRETATION Proteomic patterns obtained directly from small amounts of fresh frozen lung-tumour tissue could be used to accurately classify and predict histological groups as well as nodal involvement and survival in resected non-small-cell lung cancer.


Nature | 2015

Comprehensive genomic profiles of small cell lung cancer

Julie George; Jing Shan Lim; Se Jin Jang; Yupeng Cun; Luka Ozretić; Gu Kong; Frauke Leenders; Xin Lu; Lynnette Fernandez-Cuesta; Graziella Bosco; Christian Müller; Ilona Dahmen; Nadine S. Jahchan; Kwon-Sik Park; Dian Yang; Anthony N. Karnezis; Dedeepya Vaka; Angela Torres; Maia Segura Wang; Jan O. Korbel; Roopika Menon; Sung-Min Chun; Deokhoon Kim; Matt Wilkerson; Neil Hayes; David Engelmann; Brigitte M. Pützer; Marc Bos; Sebastian Michels; Ignacija Vlasic

We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma

Nicholas Wang; Zachary Sanborn; Kelly L. Arnett; Laura J. Bayston; Wilson Liao; Charlotte M. Proby; Irene M. Leigh; Eric A. Collisson; Patricia B. Gordon; Lakshmi Jakkula; Sally D. Pennypacker; Yong Zou; Mimansa Sharma; Jeffrey P. North; Swapna Vemula; Theodora M. Mauro; Isaac M. Neuhaus; Philip E. LeBoit; Joe S Hur; Kyung-Hee Park; Nam Huh; Pui-Yan Kwok; Sarah T. Arron; Pierre P. Massion; Allen E. Bale; David Haussler; James E. Cleaver; Joe W. Gray; Paul T. Spellman; Andrew P. South

Squamous cell carcinomas (SCCs) are one of the most frequent forms of human malignancy, but, other than TP53 mutations, few causative somatic aberrations have been identified. We identified NOTCH1 or NOTCH2 mutations in ∼75% of cutaneous SCCs and in a lesser fraction of lung SCCs, defining a spectrum for the most prevalent tumor suppressor specific to these epithelial malignancies. Notch receptors normally transduce signals in response to ligands on neighboring cells, regulating metazoan lineage selection and developmental patterning. Our findings therefore illustrate a central role for disruption of microenvironmental communication in cancer progression. NOTCH aberrations include frameshift and nonsense mutations leading to receptor truncations as well as point substitutions in key functional domains that abrogate signaling in cell-based assays. Oncogenic gain-of-function mutations in NOTCH1 commonly occur in human T-cell lymphoblastic leukemia/lymphoma and B-cell chronic lymphocytic leukemia. The bifunctional role of Notch in human cancer thus emphasizes the context dependency of signaling outcomes and suggests that targeted inhibition of the Notch pathway may induce squamous epithelial malignancies.


Proteomics | 2008

High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry

M. Reid Groseclose; Pierre P. Massion; Pierre Chaurand; Richard M. Caprioli

A novel method for high‐throughput proteomic analysis of formalin‐fixed paraffin‐embedded (FFPE) tissue microarrays (TMA) is described using on‐tissue tryptic digestion followed by MALDI imaging MS. A TMA section containing 112 needle core biopsies from lung‐tumor patients was analyzed using MS and the data were correlated to a serial hematoxylin and eosin (H&E)‐stained section having various histological regions marked, including cancer, non‐cancer, and normal ones. By correlating each mass spectrum to a defined histological region, statistical classification models were generated that can sufficiently distinguish biopsies from adenocarcinoma from squamous cell carcinoma biopsies. These classification models were built using a training set of biopsies in the TMA and were then validated on the remaining biopsies. Peptide markers of interest were identified directly from the TMA section using MALDI MS/MS sequence analysis. The ability to detect and characterize tumor marker proteins for a large cohort of FFPE samples in a high‐throughput approach will be of significant benefit not only to investigators studying tumor biology, but also to clinicians for diagnostic and prognostic purposes.


Nature Communications | 2013

Tumour angiogenesis regulation by the miR-200 family

Chad V. Pecot; Rajesha Rupaimoole; Da Yang; Rehan Akbani; Cristina Ivan; Chunhua Lu; Sherry Y. Wu; Hee Dong Han; Maitri Y. Shah; Cristian Rodriguez-Aguayo; Justin Bottsford-Miller; Yuexin Liu; Sang Bae Kim; Anna K. Unruh; Vianey Gonzalez-Villasana; Li Huang; Behrouz Zand; Myrthala Moreno-Smith; Lingegowda S. Mangala; Morgan Taylor; Heather J. Dalton; Vasudha Sehgal; Yunfei Wen; Yu Kang; Keith A. Baggerly; Ju Seog Lee; Prahlad T. Ram; Murali Ravoori; Vikas Kundra; Xinna Zhang

The miR-200 family is well known to inhibit the epithelial-mesenchymal transition, suggesting it may therapeutically inhibit metastatic biology. However, conflicting reports regarding the role of miR-200 in suppressing or promoting metastasis in different cancer types have left unanswered questions. Here we demonstrate a difference in clinical outcome based on miR-200s role in blocking tumour angiogenesis. We demonstrate that miR-200 inhibits angiogenesis through direct and indirect mechanisms by targeting interleukin-8 and CXCL1 secreted by the tumour endothelial and cancer cells. Using several experimental models, we demonstrate the therapeutic potential of miR-200 delivery in ovarian, lung, renal and basal-like breast cancers by inhibiting angiogenesis. Delivery of miR-200 members into the tumour endothelium resulted in marked reductions in metastasis and angiogenesis, and induced vascular normalization. The role of miR-200 in blocking cancer angiogenesis in a cancer-dependent context defines its utility as a potential therapeutic agent.


Science Translational Medicine | 2010

Airway PI3K pathway activation is an early and reversible event in lung cancer development.

Adam M. Gustafson; Raffaella Soldi; Christina Anderlind; Mary Beth Scholand; Xiaohui Zhang; Kendal G Cooper; Darren Walker; Annette McWilliams; Gang Liu; Eva Szabo; Jerome S. Brody; Pierre P. Massion; Marc E. Lenburg; Stephen Lam; Andrea Bild; Avrum Spira

A cancer-associated signaling pathway is reversibly activated in the normal airways of smokers before they develop lung cancer, presenting an opportunity for preventive therapy. An Ounce of Prevention for Lung Cancer Lung cancer takes a terrific toll on humankind. Despite our understanding of the contribution of tobacco smoke, this knowledge has not been able to reverse the global increase in lung cancer incidence. New approaches are needed. Is there a way to tell whether a smoker will develop cancer and, even more important, can we see when this process starts so we can stop it? Work from Gustafson and colleagues has defined a biochemical harbinger of cancer in seemingly normal respiratory tissue that can be reversed before cancer begins. Numerous cellular signaling pathways are deregulated in cancers, such as the Ras, p53, and phosphatidylinositol 3-kinase (PI3K) pathways. A molecular understanding of lung cancer may help to develop effective drugs for deterrence. To see whether they could find a predictor of impending cancer, the authors examined normal respiratory tract tissue from smokers with lung cancer or other abnormalities. By looking for previously determined gene expression signatures for various signaling pathways, they found that one of these pathways—PI3K—was clearly activated above normal values. Moreover, the PI3K pathway was already turned on in smokers with abnormal dysplastic lesions, precursors to lung cancer. Lung cancer cells themselves showed even higher expression of the genes in the PI3K pathway. Concluding that elevated PI3K pathway activity precedes the development of lung cancer, the authors assessed gene expression in tissue from patients with dysplasias who had been successfully treated with myo-inositol, an inhibitor of PI3K, finding effective down-regulation of the PI3K pathway. Treatment of cancers with surgery, radiation, and chemotherapy—or, in some cases, targeted molecular therapies—may be the standard of care at present. But prevention should surely be the ultimate goal. The new tool reported in this article—measurement of PI3K pathway activation—and the demonstration that this is an early and reversible step in lung tumorigenesis are hopeful signs. Although only a subset of smokers develop lung cancer, we cannot determine which smokers are at highest risk for cancer development, nor do we know the signaling pathways altered early in the process of tumorigenesis in these individuals. On the basis of the concept that cigarette smoke creates a molecular field of injury throughout the respiratory tract, this study explores oncogenic pathway deregulation in cytologically normal proximal airway epithelial cells of smokers at risk for lung cancer. We observed a significant increase in a genomic signature of phosphatidylinositol 3-kinase (PI3K) pathway activation in the cytologically normal bronchial airway of smokers with lung cancer and smokers with dysplastic lesions, suggesting that PI3K is activated in the proximal airway before tumorigenesis. Further, PI3K activity is decreased in the airway of high-risk smokers who had significant regression of dysplasia after treatment with the chemopreventive agent myo-inositol, and myo-inositol inhibits the PI3K pathway in vitro. These results suggest that deregulation of the PI3K pathway in the bronchial airway epithelium of smokers is an early, measurable, and reversible event in the development of lung cancer and that genomic profiling of these relatively accessible airway cells may enable personalized approaches to chemoprevention and therapy. Our work further suggests that additional lung cancer chemoprevention trials either targeting the PI3K pathway or measuring airway PI3K activation as an intermediate endpoint are warranted.


The Journal of Molecular Diagnostics | 2011

A Platform for Rapid Detection of Multiple Oncogenic Mutations With Relevance to Targeted Therapy in Non-Small-Cell Lung Cancer

Zengliu Su; Dora Dias-Santagata; MarKeesa Duke; Katherine E. Hutchinson; Ya Lun Lin; Darrell R. Borger; Christine H. Chung; Pierre P. Massion; Cindy L. Vnencak-Jones; A. John Iafrate; William Pao

The identification of somatically acquired tumor mutations is increasingly important in the clinical management of cancer because the sensitivity of targeted drugs is related to the genetic makeup of individual tumors. Thus, mutational profiles of tumors can help prioritize anticancer therapy. We report herein the development and validation of two multiplexed assays designed to detect in DNA from FFPE tissue more than 40 recurrent mutations in nine genes relevant to existing and emerging targeted therapies in lung cancer. The platform involves two methods: a screen (SNaPshot) based on multiplex PCR, primer extension, and capillary electrophoresis that was designed to assess for 38 somatic mutations in eight genes (AKT1, BRAF, EGFR, KRAS, MEK1, NRAS, PIK3CA, and PTEN) and a PCR-based sizing assay that assesses for EGFR exon 19 deletions, EGFR exon 20 insertions, and HER2 exon 20 insertions. Both the SNaPshot and sizing assays can be performed rapidly, with minimal amounts of genetic material. Compared with direct sequencing, in which mutant DNA needs to compose 25% or more of the total DNA to easily detect a mutation, the SNaPshot and sizing assays can detect mutations in samples in which mutant DNA composes 1.56% to 12.5% and 1.56% to 6.25% of the total DNA, respectively. These robust, reliable, and relatively inexpensive assays should help accelerate adoption of a genotype-driven approach in the treatment of lung cancer.


Cancer Research | 2005

Dominant-negative notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers

Nobuhiro Haruki; Keiko S. Kawaguchi; Shannon Eichenberger; Pierre P. Massion; Sandra J. Olson; Adriana Gonzalez; David P. Carbone; Thao P. Dang

Notch3 is a member of an evolutionarily conserved family of cell surface receptors important in cell-fate determination in both vertebrates and invertebrates. Significant data support the role of Notch pathway in cancer development, although the conflicting role of Notch signaling pathways in tumorigenesis suggests that its action is highly context-dependent. Furthermore, although Notch receptors signal primarily through the regulation of hairy enhancer of split (HES) and HES-related (HRT) genes, they are known to crosstalk with other signaling pathways, including the epidermal growth factor (EGF) and the mitogen-activated protein kinase pathways. Whereas much is known about the role of Notch1 in human cancer, the role of Notch3 in epithelial tumors, such as lung carcinomas, has not been well established. In this study, we show that Notch3 is expressed in 80 of 207 (39%) resected human lung tumors and that its expression is positively correlated with EGF receptor expression. Inhibition of the Notch3 pathway using a dominant-negative receptor dramatically reduces growth in soft agar and increases growth factor dependence. We also find that Notch inhibition increases sensitivity to EGF receptor tyrosine kinase inhibition and decrease in phosphorylation of the mitogen-activated protein kinase. These observations support a role for Notch3 signaling in lung cancer, and one potential mechanism of maintaining the neoplastic phenotype is through the modulation of the EGF pathway.


Cancer Prevention Research | 2012

The State of Molecular Biomarkers for the Early Detection of Lung Cancer

Mohamed Hassanein; Callison Jc; Carol Callaway-Lane; Melinda C. Aldrich; Eric L. Grogan; Pierre P. Massion

Using biomarkers to select the most at-risk population, to detect the disease while measurable and yet not clinically apparent has been the goal of many investigations. Recent advances in molecular strategies and analytic platforms, including genomics, epigenomics, proteomics, and metabolomics, have identified increasing numbers of potential biomarkers in the blood, urine, exhaled breath condensate, bronchial specimens, saliva, and sputum, but none have yet moved to the clinical setting. Therefore, there is a recognized gap between the promise and the product delivery in the cancer biomarker field. In this review, we define clinical contexts where risk and diagnostic biomarkers may have use in the management of lung cancer, identify the most relevant candidate biomarkers of early detection, provide their state of development, and finally discuss critical aspects of study design in molecular biomarkers for early detection of lung cancer. Cancer Prev Res; 5(8); 992–1006. ©2012 AACR.

Collaboration


Dive into the Pierre P. Massion's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Shyr

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric L. Grogan

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Zou

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge