Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Robe is active.

Publication


Featured researches published by Pierre Robe.


Biochemical Pharmacology | 2000

Nuclear factor-kappa B, cancer, and apoptosis.

Vincent Bours; Mohamed Bentires-Alj; Anne-Cécile Hellin; Patrick Viatour; Pierre Robe; Sylvie Delhalle; Valérie Benoit; Marie-Paule Merville

The role of nuclear factor (NF)-kappa B in the regulation of apoptosis in normal and cancer cells has been extensively studied in recent years. Constitutive NF-kappa B activity in B lymphocytes as well as in Hodgkins disease and breast cancer cells protects these cells against apoptosis. It has also been reported that NF-kappa B activation by tumor necrosis factor (TNF)-alpha, chemotherapeutic drugs, or ionizing radiations can protect several cell types against apoptosis, suggesting that NF-kappa B could participate in resistance to cancer treatment. These observations were explained by the regulation of antiapoptotic gene expression by NF-kappa B. However, in our experience, inhibition of NF-kappa B activity in several cancer cell lines has a very variable effect on cell mortality, depending on the cell type, the stimulus, and the level of NF-kappa B inhibition. Moreover, in some experimental systems, NF-kappa B activation is required for the onset of apoptosis. Therefore, it is likely that the NF-kappa B antiapoptotic role in response to chemotherapy is cell type- and signal-dependent and that the level of NF-kappa B inhibition is important. These issues will have to be carefully investigated before considering NF-kappa B as a target for genetic or pharmacological anticancer therapies.


The New England Journal of Medicine | 2011

NFKBIA Deletion in Glioblastomas

Markus Bredel; Denise M. Scholtens; Ajay K. Yadav; Angel A. Alvarez; Jaclyn J. Renfrow; James P. Chandler; Irene L.Y. Yu; Maria Stella Carro; Fangping Dai; Michael Tagge; Roberto Ferrarese; Claudia Bredel; Heidi S. Phillips; Paul J. Lukac; Pierre Robe; Astrid Weyerbrock; Hannes Vogel; Steven Dubner; Bret C. Mobley; Xiaolin He; Adrienne C. Scheck; Branimir I. Sikic; Kenneth D. Aldape; Arnab Chakravarti; Griffith R. Harsh

BACKGROUND Amplification and activating mutations of the epidermal growth factor receptor (EGFR) oncogene are molecular hallmarks of glioblastomas. We hypothesized that deletion of NFKBIA (encoding nuclear factor of κ-light polypeptide gene enhancer in B-cells inhibitor-α), an inhibitor of the EGFR-signaling pathway, promotes tumorigenesis in glioblastomas that do not have alterations of EGFR. METHODS We analyzed 790 human glioblastomas for deletions, mutations, or expression of NFKBIA and EGFR. We studied the tumor-suppressor activity of NFKBIA in tumor-cell culture. We compared the molecular results with the outcome of glioblastoma in 570 affected persons. RESULTS NFKBIA is often deleted but not mutated in glioblastomas; most deletions occur in nonclassical subtypes of the disease. Deletion of NFKBIA and amplification of EGFR show a pattern of mutual exclusivity. Restoration of the expression of NFKBIA attenuated the malignant phenotype and increased the vulnerability to chemotherapy of cells cultured from tumors with NFKBIA deletion; it also reduced the viability of cells with EGFR amplification but not of cells with normal gene dosages of both NFKBIA and EGFR. Deletion and low expression of NFKBIA were associated with unfavorable outcomes. Patients who had tumors with NFKBIA deletion had outcomes that were similar to those in patients with tumors harboring EGFR amplification. These outcomes were poor as compared with the outcomes in patients with tumors that had normal gene dosages of NFKBIA and EGFR. A two-gene model that was based on expression of NFKBIA and O(6)-methylguanine DNA methyltransferase was strongly associated with the clinical course of the disease. CONCLUSIONS Deletion of NFKBIA has an effect that is similar to the effect of EGFR amplification in the pathogenesis of glioblastoma and is associated with comparatively short survival.


Oncogene | 2004

Survivin enhances radiation resistance in primary human glioblastoma cells via caspase-independent mechanisms

Arnab Chakravarti; Gary G. Zhai; Min Zhang; Rajeev Malhotra; Douglas E. Latham; Meaghan A. Delaney; Pierre Robe; Ulf Nestler; Qinhui Song; Jay S. Loeffler

The observed radioresistance of human glioblastoma multiforme (GBM) poses a major challenge, which, if overcome, may lead to significant advances in the management of this patient population. There is accumulating evidence from correlative studies that Survivin expression is associated with increased malignant potential of human gliomas. The purpose of this study was to investigate whether Survivin plays a direct role in mediating radiation resistance in primary human glioma cell lines, and, if so, investigating the underlying mechanisms. Our panel of GBM cell lines included two that were relatively radiation resistant (GM20 and GM21) and two that were more radiation sensitive (GM22 and GM23), which demonstrated differential levels of Survivin expression between the two groups. Through the use of adenoviral vectors containing either dominant-negative (pAd-S(T34A)) or wild-type Suvrivin (pAd-S(WT)), we were able to inactivate or overexpress Survivin, respectively. Our findings suggest that Survivin plays a critical role in mediating radiation resistance in primary GBM cells, in part through suppression of apoptotic cell death via a caspase-independent manner. We have identified novel mechanisms by which Survivin may enhance tumor cell survival upon radiation exposure such as regulation of double-strand DNA break repair and tumor cell metabolism, which were most evident in the radiation-resistant cell lines. These differences in Survivin function both in radiation-resistant vs radiation-sensitive cell lines and in the presence vs absence of radiation exposure warrant further investigation and highlight potentially important mechanisms of radiation resistance in these tumors.


Clinical Cancer Research | 2004

In vitro and in vivo activity of the nuclear factor-kappa B inhibitor sulfasalazine in human glioblastomas.

Pierre Robe; Mohamed Bentires-Alj; Marianne Bonif; Bernard Rogister; Manuel Deprez; Heddi Haddada; Minh-Tuan Nguyen Khac; Olivier Jolois; Kadir Erkmen; Marie-Paule Merville; Peter McL. Black; Vincent Bours

Glioblastomas, the most common primary brain cancers, respond poorly to current treatment modalities and carry a dismal prognosis. In this study, we demonstrated that the transcription factor nuclear factor (NF)-κB is constitutively activated in glioblastoma surgical samples, primary cultures, and cell lines and promotes their growth and survival. Sulfasalazine, an anti-inflammatory drug that specifically inhibits the activation of NF-κB, blocked the cell cycle and induced apoptosis in several glioblastoma cell lines and primary cultures, as did gene therapy with a vector encoding a super-repressor of NF-κB. In vivo, sulfasalazine also significantly inhibited the growth of experimental human glioblastomas in nude mice brains. Given the documented safety of sulfasalazine in humans, these results may lead the way to a new class of glioma treatment.


Journal of Neuroscience Research | 1996

Effects of Schwann Cell Transplantation in a Contusion Model of Rat Spinal Cord Injury

Didier Martin; Pierre Robe; Rachelle Franzen; P. Delrée; Jean Schoenen; Achille Stevenaert; Gustave Moonen

Cultured Schwann cells were transplanted at various delays into a spinal cord contusion injury performed at low thoracic level in adult female rats. The Schwann cells were purified from the dorsal root ganglia of adult syngeneic animals. The transplants were well tolerated, and the transplanted Schwann cells invaded the injured spinal cord. As quantified using video image analysis, the survival and growth of the transplanted cells were poor when the grafting procedure was performed 3–4 days after injury and very good when performed immediately or 10 days after injury, in which cases post‐traumatic micro‐ and macrocavitation were strongly reduced. In animals grafted immediately after injury but not in animals grafted after 10 days, post‐traumatic astrogliosis was much reduced. The Schwann cells transplanted area was invaded by numerous regenerating axons, the vast majority of which were, based on the neurotransmitter (CGRP and SP) profile, originating from dorsal root ganglion. No regeneration of the cortico‐spinal tract as assessed after anterograde tracing or of descending aminergic fibers could be demonstrated.


Journal of Neuro-oncology | 2006

Radiation enhances the invasive potential of primary glioblastoma cells via activation of the Rho signaling pathway.

Gary G. Zhai; Rajeev Malhotra; Meaghan A. Delaney; Douglas E. Latham; Ulf Nestler; Min Zhang; Neelanjan Mukherjee; Qinhui Song; Pierre Robe; Arnab Chakravarti

SummaryGlioblastoma multiforme (GBM) is among the most treatment-refractory of all human tumors. Radiation is effective at prolonging survival of GBM patients; however, the vast majority of GBM patients demonstrate progression at or near the site of original treatment. We have identified primary GBM cell lines that demonstrate increased invasive potential upon radiation exposure. As this represents a novel mechanism by which radiation-treated GBMs can fail therapy, we further investigated the identity of downstream signaling molecules that enhance the invasive phenotype of irradiated GBMs. Matrigel matrices were used to compare the extent of invasion of irradiated vs. non-irradiated GBM cell lines UN3 and GM2. The in vitro invasive potential of these irradiated cells were characterized in the presence of both pharmacologic and dominant negative inhibitors of extracellular matrix and cell signaling molecules including MMP, uPA, IGFR, EGFR, PI-3K, AKT, and Rho kinase. The effect of radiation on the expression of these signaling molecules was determined with Western blot assays. Ultimately, the in vitro tumor invasion results were confirmed using an in vivo 9L GBM model in rats. Using the primary GBM cell lines UN3 and GM2, we found that radiation enhances the invasive potential of these cells via activation of EGFR and IGFR1. Our findings suggest that activation of Rho signaling via PI-3K is required for radiation-induced invasion, although not required for invasion under physiologic conditions. This report clearly demonstrates that radiation-mediated invasion is fundamentally distinct from invasion under normal cellular physiology and identifies potential therapeutic targets to overcome this phenomenon.


Neurosurgery | 2008

Surgical management of anterior cranial base fractures with cerebrospinal fluid fistulae: a single-institution experience.

Martin Scholsem; Félix Scholtes; Frederick Collignon; Pierre Robe; Annie Dubuisson; Bruno Kaschten; Jacques Lenelle; Didier Martin

OBJECTIVE The management of cerebrospinal fluid (CSF) fistulae after anterior cranial base fracture remains a surgical challenge. We reviewed our results in the repair of CSF fistulae complicating multiple anterior cranial base fractures via a combined intracranial extradural and intradural approach and describe a treatment algorithm derived from this experience. METHODS We retrospectively reviewed the files of 209 patients with an anterior cranial base fracture complicated by a CSF fistula who were admitted between 1980 and 2003 to Liège State University Hospital. Among those patients, 109 had a persistent CSF leak or radiological signs of an unhealed dural tear. All underwent the same surgical procedure, with combined extradural and intradural closure of the dural tear. RESULTS Of the 109 patients, 98 patients (90%) were cured after the first operation. Persistent postoperative CSF rhinorrhea occurred in 11 patients (10%), necessitating an early complementary surgery via a transsphenoidal approach (7 patients) or a second-look intracranial approach (4 patients). No postoperative neurological deterioration attributable to increasing frontocerebral edema occurred. During the mean follow-up period of 36 months, recurrence of CSF fistula was observed in five patients and required an additional surgical repair procedure. CONCLUSION The closure of CSF fistulae after an anterior cranial base fracture via a combined intracranial extradural and intradural approach, which allows the visualization and repair of the entire anterior base, is safe and effective. It is essentially indicated for patients with extensive bone defects in the cranial base, multiple fractures of the ethmoid bone and the posterior wall of the frontal sinus, cranial nerve involvement, associated lesions necessitating surgery such as intracranial hematomas, and post-traumatic intracranial infection. Rhinorrhea caused by a precisely located small tear may be treated with endoscopy.


BMC Cancer | 2009

Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of Sulfasalazine for the treatment of progressing malignant gliomas in adults

Pierre Robe; Didier Martin; Minh T Nguyen-Khac; Maria Artesi; Manuel Deprez; Adelin Albert; Sophie Vanbelle; Stephane Califice; Markus Bredel; Vincent Bours

BackgroundSulfasalazine, a NF-kappaB and x(c)-cystine/glutamate antiport inhibitor, has demonstrated a strong antitumoral potential in preclinical models of malignant gliomas. As it presents an excellent safety profile, we initiated a phase 1/2 clinical study of this anti-inflammatory drug for the treatment of recurrent WHO grade 3 and 4 astrocytic gliomas in adults.Methods10 patients with advanced recurrent anaplastic astrocytoma (n = 2) or glioblastoma (n = 8) aged 32-62 years were recruited prior to the planned interim analysis of the study. Subjects were randomly assigned to daily doses of 1.5, 3, 4.5, or 6 grams of oral sulfasalazine, and treated until clinical or radiological evidence of disease progression or the development of serious or unbearable side effects. Primary endpoints were the evaluation of toxicities according to the CTCAE v.3.0, and the observation of radiological tumor responses based on MacDonald criteria.ResultsNo clinical response was observed. One tumor remained stable for 2 months with sulfasalazine treatment, at the lowest daily dose of the drug. The median progression-free survival was 32 days. Side effects were common, as all patients developed grade 1-3 adverse events (mean: 7.2/patient), four patients developed grade 4 toxicity. Two patients died while on treatment or shortly after its discontinuation.ConclusionAlthough the proper influence of sulfasalazine treatment on patient outcome was difficult to ascertain in these debilitated patients with a large tumor burden (median KPS = 50), ISRCTN45828668 was terminated after its interim analysis. This study urges to exert cautiousness in future trials of Sulfasalazine for the treatment of malignant gliomas.Trial RegistrationCurrent Controlled Trials ISRCTN45828668


JAMA | 2009

Monosomy of Chromosome 10 Associated With Dysregulation of Epidermal Growth Factor Signaling in Glioblastomas

Ajay K. Yadav; Jaclyn J. Renfrow; Denise M. Scholtens; Hehuang Xie; George E. Duran; Claudia Bredel; Hannes Vogel; James P. Chandler; Arnab Chakravarti; Pierre Robe; Sunit Das; Adrienne C. Scheck; John A. Kessler; Marcelo B. Soares; Branimir I. Sikic; Griffith R. Harsh; Markus Bredel

CONTEXT Glioblastomas--uniformly fatal brain tumors--often have both monosomy of chromosome 10 and gains of the epidermal growth factor receptor (EGFR) gene locus on chromosome 7, an association for which the mechanism is poorly understood. OBJECTIVES To assess whether coselection of EGFR gains on 7p12 and monosomy 10 in glioblastomas promotes tumorigenic epidermal growth factor (EGF) signaling through loss of the annexin A7 (ANXA7) gene on 10q21.1-q21.2 and whether ANXA7 acts as a tumor suppressor gene by regulating EGFR in glioblastomas. DESIGN, SETTING, AND PATIENTS Multidimensional analysis of gene, coding sequence, promoter methylation, messenger RNA (mRNA) transcript, protein data for ANXA7 (and EGFR), and clinical patient data profiles of 543 high-grade gliomas from US medical centers and The Cancer Genome Atlas pilot project (made public 2006-2008; and unpublished, tumors collected 2001-2008). Functional analyses using LN229 and U87 glioblastoma cells. MAIN OUTCOME MEASURES Associations among ANXA7 gene dosage, coding sequence, promoter methylation, mRNA transcript, and protein expression. Effect of ANXA7 haploinsufficiency on EGFR signaling and patient survival. Joint effects of loss of ANXA7 and gain of EGFR expression on tumorigenesis. RESULTS Heterozygous ANXA7 gene deletion is associated with significant loss of ANXA7 mRNA transcript expression (P = 1 x 10(-15); linear regression) and a reduction (mean [SEM]) of 91.5% (2.3%) of ANXA7 protein expression compared with ANXA7 wild-type glioblastomas (P = .004; unpaired t test). ANXA7 loss of function stabilizes the EGFR protein (72%-744% increase in EGFR protein abundance) and augments EGFR transforming signaling in glioblastoma cells. ANXA7 haploinsufficiency doubles tumorigenic potential of glioblastoma cells, and combined ANXA7 knockdown and EGFR overexpression promotes tumorigenicity synergistically. The heterozygous loss of ANXA7 in approximately 75% of glioblastomas in the The Cancer Genome Atlas plus infrequency of ANXA7 mutation (approximately 6% of tumors) indicates its role as a haploinsufficiency gene. ANXA7 mRNA transcript expression, dichotomized at the median, associates with patient survival in 191 glioblastomas (log-rank P = .008; hazard ratio [HR], 0.667; 95% confidence interval [CI], 0.493-0.902; 46.9 vs 74.8 deaths/100 person-years for high vs low ANXA7 mRNA expression) and with a separate group of 180 high-grade gliomas (log-rank P = .00003; HR, 0.476; 95% CI, 0.333-0.680; 21.8 vs 50.0 deaths/100 person-years for high vs low ANXA7 mRNA expression). Deletion of the ANXA7 gene associates with poor patient survival in 189 glioblastomas (log-rank P = .042; HR, 0.686; 95% CI, 0.476-0.989; 54.0 vs 80.1 deaths/100 person-years for wild-type ANXA7 vs ANXA7 deletion). CONCLUSION Haploinsufficiency of the tumor suppressor ANXA7 due to monosomy of chromosome 10 provides a clinically relevant mechanism to augment EGFR signaling in glioblastomas beyond that resulting from amplification of the EGFR gene.


International Journal of Cancer | 2015

Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells.

Jeroen de Vrij; S.L. Niek Maas; Kitty M. C. Kwappenberg; Rosalie Schnoor; Anne Kleijn; Lennard J. M. Dekker; Theo M. Luider; Lot de Witte; Manja Litjens; Miriam E. van Strien; Elly M. Hol; Jérôme Kroonen; Pierre Robe; Martine Lamfers; Marco W. Schilham; Marike L. D. Broekman

Glioblastoma multiforme (GBM) is the most common primary brain tumor and is without exception lethal. GBMs modify the immune system, which contributes to the aggressive nature of the disease. Particularly, cells of the monocytic lineage, including monocytes, macrophages and microglia, are affected. We investigated the influence of GBM‐derived extracellular vesicles (EVs) on the phenotype of monocytic cells. Proteomic profiling showed GBM EVs to be enriched with proteins functioning in extracellular matrix interaction and leukocyte migration. GBM EVs appeared to skew the differentiation of peripheral blood‐derived monocytes to alternatively activated/M2‐type macrophages. This was observed for EVs from an established cell line, as well as for EVs from primary cultures of GBM stem‐like cells (GSCs). Unlike EVs of non‐GBM origin, GBM EVs induced modified expression of cell surface proteins, modified cytokine secretion (e.g., an increase in vascular endothelial growth factor and IL‐6) and increased phagocytic capacity of the macrophages. Most pronounced effects were observed upon incubation with EVs from mesenchymal GSCs. GSC EVs also affected primary human microglia, resulting in increased expression of Membrane type 1‐matrix metalloproteinase, a marker for GBM microglia and functioning as tumor‐supportive factor. In conclusion, GBM‐derived EVs can modify cells of the monocytic lineage, which acquire characteristics that resemble the tumor‐supportive phenotypes observed in patients.

Collaboration


Dive into the Pierre Robe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnab Chakravarti

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge