Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Samson is active.

Publication


Featured researches published by Pierre Samson.


Nutrition | 2000

Influence of Topiramate in the Regulation of Energy Balance

Denis Richard; Julie Ferland; Josée Lalonde; Pierre Samson; Yves Deshaies

Topiramate (TPM) is a novel neurotherapeutic agent currently indicated for the treatment of epilepsy and undergoing development for other central nervous system indications including neuropathic pain, bipolar disorder, and migraine prophylaxis. TPM is synthesized from D-fructose and contains a sulfamate moiety that is essential for its pharmacologic activity. TPM has been observed to significantly reduce body weight in patients treated for seizure, which has prompted the realization of preclinical studies to characterize the effects of TPM in the regulation of energy balance. Studies carried out in various strains of rats have provided good evidence for the ability of TPM to blunt energy deposition. Body composition analyses from rat trials have demonstrated that TPM inhibits fat deposition while reducing the activity of lipoprotein lipase (LPL) in various white adipose tissue depots. High doses of TPM (likely above the therapeutic dose range) have also been observed to reduce protein gain without catabolic effects. Although TPM cannot be described as a potent anorectic agent, it seems to have the ability to reduce food intake; significant reductions in food intake have been observed in female obese (fa/fa) Zucker rats and in female Wistar rats. TPM can also reduce energy deposition in the absence of alterations in food intake. This effect has been clearly emphasized in female lean (Fa/?) Zucker rats. In female Sprague-Dawley rats, TPM also increased energy expenditure and it has been observed to increase LPL activity in brown adipose tissue, which could indicate that TPM has the ability to enhance regulatory thermogenesis. In addition, TPM stimulates LPL activity in skeletal muscles, further emphasizing its potential to promote substrate oxidation. The mechanisms whereby TPM affects the regulation of energy balance have yet to be understood. TPM represents an antiepileptic drug (AED) with complex biochemical/pharmacologic actions. Its negative effects on energy deposition cannot be readily predicted from these actions, as AEDs are generally expected to stimulate body weight gain. Recent data, obtained from investigations aimed at assessing the effects of TPM on neuropeptidergic systems involved in the regulation of energy balance, have failed to demonstrate any significant effects of TPM on the neuropeptide Y and proopiomelanocortin systems. In conclusion, it is clear that TPM can reduce fat deposition by either reducing food intake or stimulating energy expenditure. The mechanisms whereby an AED such as TPM controls food intake and energy expenditure remains to be delineated. Copyright1999 ASCRS and ESCRS


Diabetes | 2006

Effects of Rimonabant (SR141716) on Fasting-Induced Hypothalamic-Pituitary-Adrenal Axis and Neuronal Activation in Lean and Obese Zucker Rats

Christian Doyon; Raphaël G.P. Denis; Elena-Dana Baraboi; Pierre Samson; Josée Lalonde; Yves Deshaies; Denis Richard

The effects of the cannabinoid-1 receptor (CB1) antagonist rimonabant on energy metabolism and fasting-induced hypothalamic-pituitary-adrenal (HPA) axis and neuronal activation were investigated. Lean and obese Zucker rats were treated orally with a daily dose of 10 mg/kg rimonabant for 14 days. A comprehensive energy balance profile based on whole-carcass analyses further demonstrated the potential of CB1 antagonists for decreasing energy gain through reducing food intake and potentially increasing brown adipose tissue thermogenesis. Rimonabant also reduced plasma glucose, insulin, and homeostasis model assessment of insulin resistance, which further confirms the ability of CB1 antagonists to improve insulin sensitivity. To test the hypothesis that rimonabant attenuates the effect of fasting on HPA axis activation in the obese Zucker model, rats were either ad libitum–fed or food-deprived for 8 h. Contrary to expectation, rimonabant increased basal circulating corticosterone levels and enhanced the HPA axis response to food deprivation in obese rats. Rimonabant also exacerbated the neuronal activation seen in the arcuate nucleus (ARC) after short-term deprivation. In conclusion, the present study demonstrates that CB1 blockade does not prevent the hypersensitivity to food deprivation occurring at the level of HPA axis and ARC activation in the obese Zucker rats. This, however, does not prevent CB1 antagonism from exerting beneficial effects on energy and glucose metabolism.


International Journal of Obesity | 2000

Effects of the estrogen antagonist EM-652.HCl on energy balance and lipid metabolism in ovariectomized rats

Frédéric Picard; Yves Deshaies; Josée Lalonde; Pierre Samson; C Labrie; A Bélanger; F Labrie; Denis Richard

OBJECTIVE: The estrogen antagonist EM-652.HCl behaves as a highly potent and pure antiestrogen in human breast and uterine cancer cells. Because of its pure antiestrogenic activity in these cells, and because its prodrug, EM-800, reduces bone loss and decreases serum cholesterol and triglycerides in the rat, EM-652.HCl can be classified as a pure selective estrogen receptor modulator (SERM). This study was conducted to assess the ability of EM-652.HCl to prevent obesity and abnormalities of lipid metabolism induced by ovariectomy in a rat model.DESIGN: Female rats were left intact or ovariectomized (OVX), and OVX rats were treated with placebo, estradiol (E2), or EM-652.HCl for 20 days. At the end of the treatment period, parameters of energy balance and determinants of lipid metabolism were assessed.RESULTS: As expected, OVX increased energy intake, which in turn was accompanied by an increased energy, fat and protein gain and higher food efficiency. OVX also increased the triglyceride content of the liver and produced hypercholesterolemia and hyperinsulinemia. The weight of representative white adipose depots was higher in OVX than in intact rats. Lipoprotein lipase activity was higher in white adipose tissues of OVX rats than in those of intact animals, whereas its activity was lower in oxidative tissues (brown adipose and soleus muscle). Replacement therapy with a physiological dose of E2 prevented most of the abnormalities in energy and lipid metabolism brought about by OVX, although its orexigenic effect was only partially corrected. In contrast, treatment of OVX rats with EM-652.HCl completely abolished OVX-induced obesity and its related abnormalities in lipid metabolism and glucose/insulin homeostasis.CONCLUSION: These findings demonstrate that EM-652.HCl can be considered as an effective agent to prevent OVX-induced obesity. The present study also shows that EM-652.HCl reduces cardiovascular risk factors associated with obesity such as hyperlipidemia and insulin resistance.


International Journal of Obesity | 2002

The effects of topiramate and sex hormones on energy balance of male and female rats

Denis Richard; Frédéric Picard; Christian Lemieux; Josée Lalonde; Pierre Samson; Yves Deshaies

OBJECTIVE: The effects of topiramate (TPM) on components of energy balance were tested in male and female rats that were (i) left intact, (ii) castrated or (iii) castrated with replacement therapies consisting of testosterone administration in orchidectomized (OCX) rats and of estradiol or progesterone treatments in ovariectomized (OVX) rats.METHODS: TPM was mixed into the diet and administered at a dose of 60 mg per kg of body weight. Male and female rats were treated for 28 and 35 days, respectively. At the end of the treatment period, variables of energy balance and determinants of lipid and glucose metabolism were assessed.RESULTS: TPM reduced energy and fat gains in both male and female rats either in the absence or in the presence of hormone replacement therapies. In male rats, it also decreased food intake, protein gain and energetic efficiency. In female animals, TPM reduced energetic efficiency while it stimulated lipoprotein lipase activity in brown adipose tissue. TPM also reduced plasma glucose and plasma leptin levels in female rats as well as plasma insulin and liver triglycerides in male animals. As expected, castration and sex hormones also strongly influenced energy balance. In male rats, OCX led to a decrease in energy and protein gains that was blocked by treatment with testosterone. In female rats, OVX caused increases in energy, fat and protein gains that were prevented by treatment with estradiol.CONCLUSION: In female rats, the effects of TPM on fat and energy gains were clearly not influenced by the sex hormone status of the rats. In male animals, there was also no interaction of TPM and the status of sex hormones on energy balance, suggesting that OCX and testosterone minimally interfere with the action of TPM on energy balance. The effects of TPM on energy balance were accounted for by a decrease in energetic efficiency, resulting from an effect exerted by the drug on both energy intake and thermogenesis. The present results also suggest that TPM can enhance insulin sensitivity.


International Journal of Obesity | 2006

Effects of the biliopancreatic diversion on energy balance in the rat.

Eric Nadreau; Elena-Dana Baraboi; Pierre Samson; Blouin A; Frédéric S. Hould; Picard Marceau; Simon Biron; Denis Richard

Objective:This study was carried out to determine the effects of the biliopancreatic diversion (BPD), a bariatric surgery applied to the treatment of morbidly obese humans, on energy balance in rats.Methods:BPD was performed on a group of male Wistar rats. Body weight and food intake were measured daily throughout the study. Feces were also collected to assess energy losses and the determination of digestible energy. Energy expenditure and body composition were also determined for the 50-day length of the protocol. On the day of killing, the brain, the entire intestinal tract and white and brown adipose tissues were collected and weighed. Expression of neuropeptide Y (NPY) and agouti-related protein (AgRP) in the ARC nucleus were assessed by in situ hybridization.Results:Marked changes in the regulation of energy balance were observed in the BPD-operated rats. A decrease in digestible energy and food intake coupled with an increase in the fecal energy density and protein fecal energy led to an important weight loss in the BPD-operated rats. This weight loss was observed in the loss of fat mass (specifically the white epididymal, inguinal, retroperitoneal and brown adipose tissues). The rats modified their food intake pattern to be able to potentially eat more during the entire day. An increase in the surfaces of all intestinal structures (muscular and mucosal layers) was observed in the BPD-operated rats. The NPY and AgRP expression in the brain were both shown to be greater in the BPD-operated rats than in the control animals. At the beginning of the study, the surgery led to an energy expenditure decrease, which, however, did not persist throughout the study despite the fact that BPD-operated rats exhibited persistent lower fat free masses.Conclusion:BPD led to a noticeable reduction in weight and fat gains in rats, which was in large part owing to a decrease in digestible energy intake led to by the gastrectomy, the intestinal malabsorption inherent to the surgery and to potentially a thermogenesis stimulation that occurred in the second end of the study. The reduction in energy gain occurs despite adaptations to thwart the intestinal malabsorption and the hunger signals from the central nervous system.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Effects of intracerebroventricular and intra-accumbens melanin-concentrating hormone agonism on food intake and energy expenditure

Benjamin Guesdon; Eric Paradis; Pierre Samson; Denis Richard

The brain melanin-concentrating hormone (MCH) system represents an anabolic system involved in energy balance regulation through influences exerted on the homeostatic and nonhomeostatic controls of food intake and energy expenditure. The present study was designed to further delineate the effect of the MCH system on energy balance regulation by assessing the actions of the MCH receptor 1 (MCHR1) agonism on both food intake and energy expenditure after intracerebroventricular (third ventricle) and intra-nucleus-accumbens-shell (intraNAcSH) injections of a MCHR1 agonist. Total energy expenditure and substrate oxidation were assessed following injections in male Wistar rats using indirect calorimetry. Food intake was also measured. Pair-fed groups were added to evaluate changes in thermogenesis that would occur regardless of the meal size and its thermogenic response. Using such experimental conditions, we were able to demonstrate that acute MCH agonism in the brain, besides its orexigenic effect, induced a noticeable change in the utilization of the main metabolic fuels. In pair-fed animals, MCH significantly reduced lipid oxidation when it was injected in the third ventricle. Such an effect was not observed following the injection of MCH in the NAcSH, where MCH nonetheless strongly stimulated appetite. The present results further delineate the influence of MCH on energy expenditure and substrate oxidation while confirming the key role of the NAcSH in the effects of the MCH system on food intake.


Physiology & Behavior | 2004

Additive effects of leptin and topiramate in reducing fat deposition in lean and obese ob/ob mice.

Josée Lalonde; Pierre Samson; Sébastien Poulin; Yves Deshaies; Denis Richard

The objective of the present study was to investigate the effects of the antiepileptic drug topiramate (TPM) on components of energy balance in lean and obese (ob/ob) mice in the presence or absence of leptin. Lean and ob/ob mice infused with either leptin or phosphate-buffered saline were treated with TPM for 7 days. TPM was mixed into the diet and administered at a dose of 60 mg/kg/day, whereas leptin was infused at the rate of 100 microg/kg/day using osmotic minipumps, which were subcutaneously implanted in the interscapular region. Food intake and body weight were monitored throughout the study. Body composition was measured prior to and following treatment with TPM and leptin, using dual-energy X-ray absorptiometry (DEXA). Glucose (glucose oxidase method) and insulin (radioimmunoassay) were also determined. TPM and leptin significantly reduced body weight gain, food intake and body fat gain in obese mice. The effects of TPM and leptin on fat gain were also statistically significant in lean animals. There was no interaction of TPM and leptin on the energy balance variables, the effects of the two substances being additive instead. Leptin abrogated hyperinsulinemia in obese mutants whereas TPM did not alter insulin levels in either lean or obese mice. The combination of leptin and TPM led to the normalization of glucose levels in obese mice. Our study demonstrates an effect of TPM in leptin-deficient animals, which suggests that TPM does not require the presence of leptin to exert its effect. They also show that the effects of leptin and TPM can be additive. The treatment with leptin in ob/ob mice neither accentuated nor blunted the effect of TPM on energy balance.


Endocrinology | 2014

The PVH as a Site of CB1-Mediated Stimulation of Thermogenesis by MC4R Agonism in Male Rats

Boris Monge-Roffarello; Sébastien M. Labbé; Marie-Claude Roy; Marie-Laurence Lemay; Estelle Coneggo; Pierre Samson; Damien Lanfray; Denis Richard

The present study was designed to investigate the involvement of the cannabinoid receptor 1 (CB1) in the stimulating effects of the melanocortin-4 receptor (MC4R) agonism on whole-body and brown adipose tissue (BAT) thermogenesis. In a first series of experiments, whole-body and BAT thermogenesis were investigated in rats infused in the third ventricle of the brain with the MC4R agonist melanotan II (MTII) and the CB1 agonist δ9-tetrahydrocannabinol (δ(9)-THC) or the CB1 antagonist AM251. Whole-body thermogenesis was measured by indirect calorimetry and BAT thermogenesis assessed from interscapular BAT (iBAT) temperature. δ(9)-THC blunted the effects of MTII on energy expenditure and iBAT temperature, whereas AM251 tended to potentiate the MTII effects. δ(9)-THC also blocked the stimulating effect of MTII on (14)C-bromopalmitate and (3)H-deoxyglucose uptakes in iBAT. Additionally, δ(9)-THC attenuated the stimulating effect of MTII on the expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1α), type II iodothyronine deiodinase (Dio2), carnitine palmitoyltransferase 1B (Cpt1b), and uncoupling protein 1 (Ucp1). In a second series of experiments, we addressed the involvement of the paraventricular hypothalamic nucleus (PVH) in the CB1-mediated effects of MTII on iBAT thermogenesis, which were assessed following the infusion of MTII in the PVH and δ(9)-THC or AM251 in the fourth ventricle of the brain. We demonstrated the ability of δ(9)-THC to blunt MTII-induced iBAT temperature elevation. δ(9)-THC also blocked the PVH effect of MTII on (14)C-bromopalmitate uptake as well as on Pgc1α and Dio2 expression in iBAT. Altogether the results of this study demonstrate the involvement of the PVH in the CB1-mediated stimulating effects of the MC4R agonist MTII on whole-body and BAT thermogenesis.


Endocrinology | 2015

Metabolic changes induced by the biliopancreatic diversion in diet-induced obesity in male rats: the contributions of sleeve gastrectomy and duodenal switch.

Elena-Dana Baraboi; Wei Li; Sébastien M. Labbé; Marie-Claude Roy; Pierre Samson; Frédéric-Simon Hould; Stéphane Lebel; Simon Marceau; Laurent Biertho; Denis Richard

The mechanisms underlying the body weight and fat loss after the biliopancreatic diversion with duodenal switch (BPD/DS) remain to be fully delineated. The aim of this study was to examine the contributions of the two main components of BPD/DS, namely sleeve gastrectomy (SG) and duodenal switch (DS), on energy balance changes in rats rendered obese with a high-fat (HF) diet. Three different bariatric procedures (BPD/DS, SG, and DS) and three sham surgeries were performed in male Wistar rats. Sham-operated animals fed HF were either fed ad libitum (Sham HF) or pair weighed (Sham HF PW) by food restriction to the BPD/DS rats. A group of sham-operated rats was kept on standard chow and served as normal diet control (Sham Chow). All three bariatric surgeries resulted in a transient reduction in food intake. SG per se induced a delay in body weight gain. BPD/DS and DS led to a noticeable gut malabsorption and a reduction in body weight and fat gains along with significant elevations in plasma levels of glucagon-like peptide-1(7-36) and peptide YY. BPD/DS and DS elevated energy expenditure above that of Sham HF PW during the dark phase. However, they reduced the volume, oxidative metabolism, and expression of thermogenic genes in interscapular brown adipose tissue. Altogether the results of this study suggest that the DS component of the BPD/DS, which led to a reduction in digestible energy intake while sustaining energy expenditure, plays a key role in the improvement in the metabolic profile led by BPD/DS in rats fed a HF diet.


Surgery for Obesity and Related Diseases | 2015

Malabsorption plays a major role in the effects of the biliopancreatic diversion with duodenal switch on energy metabolism in rats

Wei Li; Elena-Dana Baraboi; Nina L. Cluny; Marie-Claude Roy; Pierre Samson; Laurent Biertho; Keith A. Sharkey; Denis Richard

BACKGROUND The mechanisms underlying the metabolic benefits of the biliopancreatic diversion with duodenal switch (BPD/DS) have not been clarified. The objective of this study was to investigate the metabolic roles of sleeve gastrectomy (SG) and duodenal switch (DS) as main surgical components of BPD/DS. METHODS BPD/DS, SG, and DS surgeries were performed on chow-fed nonobese Wistar rats. Weight and energy intake were recorded during 8 postsurgical weeks. Glucagon-like peptide 1 (GLP-1), peptide tyrosine-tyrosine (PYY), glucose-dependent insulinotropic peptide, and ghrelin were measured pre- and postprandially at weeks 3 and 8, after surgery. Body composition, muscle, liver, and adipose tissue weights were measured. Gut morphometry and the presence and distribution of GLP-1 and PYY (L-cells) in the gut were determined using histochemical techniques. RESULTS Compared with sham, BPD/DS and DS led to significant reductions in weight gain, percentage of fat, and adipose tissue weight. These effects were accompanied by a reduction in digestible energy intake associated with fecal energy loss due to DS. BPD/DS and DS produced intestinal hypertrophy, as well as higher plasma GLP-1 and PYY in both fasted and refed states. It is noteworthy that none of those alterations were observed after SG, which nonetheless led to transient postoperative reduction in gross energy intake and weight. Similar to BPD/DS, SG alone produced a reduced meal size and an enhanced postprandial depression of plasma ghrelin. CONCLUSION BPD/DS results in metabolic benefits, which appear largely caused by food malabsorption due to DS. The elevation of anorectic GLP-1 and PYY are additional consequences of DS, which, together with malabsorption, could promote the metabolic benefits of BPD/DS.

Collaboration


Dive into the Pierre Samson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge