Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Testor is active.

Publication


Featured researches published by Pierre Testor.


Bulletin of the American Meteorological Society | 2014

HyMeX-SOP1: The Field Campaign Dedicated to Heavy Precipitation and Flash Flooding in the Northwestern Mediterranean

Véronique Ducrocq; Isabelle Braud; Silvio Davolio; Rossella Ferretti; Cyrille Flamant; Agustin Jansa; N. Kalthoff; Evelyne Richard; Isabelle Taupier-Letage; Pierre-Alain Ayral; Sophie Belamari; Alexis Berne; Marco Borga; Brice Boudevillain; Olivier Bock; Jean-Luc Boichard; Marie-Noëlle Bouin; Olivier Bousquet; Christophe Bouvier; Jacopo Chiggiato; Domenico Cimini; U. Corsmeier; Laurent Coppola; Philippe Cocquerez; Eric Defer; Julien Delanoë; Paolo Di Girolamo; Alexis Doerenbecher; Philippe Drobinski; Yann Dufournet

The Mediterranean region is frequently affected by heavy precipitation events associated with flash floods, landslides, and mudslides that cause hundreds of millions of euros in damages per year and often, casualties. A major field campaign was devoted to heavy precipitation and flash floods from 5 September to 6 November 2012 within the framework of the 10-year international HyMeX (Hydrological cycle in the Mediterranean Experiment) dedicated to the hydrological cycle and related high-impact events. The 2- month field campaign took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy, and Spain. The observation strategy of the field experiment was devised to improve our knowledge on the following key components leading to heavy precipitation and flash flooding in the region: i) the marine atmospheric flows that transport moist and conditionally unstable air towards the coasts; ii) the Mediterranean Sea acting as a moisture and energy source; iii) the dynamics and microphysics of the convective systems producing heavy precipitation; iv) the hydrological processes during flash floods. This article provides the rationale for developing this first HyMeX field experiment and an overview of its design and execution. Highlights of some Intense Observation Periods illustrate the potential of the unique datasets collected for process understanding, model improvement and data assimilation.


Geophysical Research Letters | 2005

Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles

Fabrizio D'Ortenzio; Daniele Iudicone; Clément de Boyer Montégut; Pierre Testor; David Antoine; Salvatore Marullo; Rosalia Santoleri; Gurvan Madec

A new 0.5° resolution Mediterranean climatology of the mixed layer depth based on individual profiles of temperature and salinity has been constructed. The criterion selected is a threshold value of temperature from a near-surface value at 10 m depth, mainly derived by a method applied on the global (de Boyer Montegut et al., 2004 dBM04). With respect to dBM04, the main differences reside in the absence of spatial interpolation of the final fields and in the improved spatial resolution. These changes to the method are necessary to reproduce the Mediterranean mixed layers behavior. In the derived climatological maps, the most relevant features of the basin surface circulation are reproduced, as well as the areas prone of the deep water formation are clearly identified. Finally, the role of density in the definition of the mixed layers differing behaviors between the oriental and the occidental regions of the basin is presented.


Journal of Geophysical Research | 2010

Impact of the spatial distribution of the atmospheric forcing on water mass formation in the Mediterranean Sea

Karine Béranger; Yann Drillet; Marie-Noëlle Houssais; Pierre Testor; Romain Bourdallé-Badie; Bahjat Alhammoud; Alexandra Bozec; Laurent Mortier; Pascale Bouruet-Aubertot; Michel Crépon

The impact of the atmospheric forcing on the winter ocean convection in the Mediterranean Sea was studied with a high-resolution ocean general circulation model. The major areas of focus are the Levantine basin, the Aegean-Cretan Sea, the Adriatic Sea, and the Gulf of Lion. Two companion simulations differing by the horizontal resolution of the atmospheric forcing were compared. The first simulation (MED16-ERA40) was forced by air-sea fields from ERA40, which is the ECMWF reanalysis. The second simulation (MED16-ECMWF) was forced by the ECMWF-analyzed surface fields that have a horizontal resolution twice as high as those of ERA40. The analysis of the standard deviations of the atmospheric fields shows that increasing the resolution of the atmospheric forcing leads in all regions to a better channeling of the winds by mountains and to the generation of atmospheric mesoscale patterns. Comparing the companion ocean simulation results with available observations in the Adriatic Sea and in the Gulf of Lion shows that MED16-ECMWF is more realistic than MED16-ERA40. In the eastern Mediterranean, although deep water formation occurs in the two experiments, the depth reached by the convection is deeper in MED16-ECMWF. In the Gulf of Lion, deep water formation occurs only in MED16-ECMWF. This larger sensitivity of the western Mediterranean convection to the forcing resolution is investigated by running a set of sensitivity experiments to analyze the impact of different time-space resolutions of the forcing on the intense winter convection event in winter 1998-1999. The sensitivity to the forcing appears to be mainly related to the effect of wind channeling by the land orography, which can only be reproduced in atmospheric models of sufficient resolution. Thus, well-positioned patterns of enhanced wind stress and ocean surface heat loss are able to maintain a vigorous gyre circulation favoring efficient preconditioning of the area at the beginning of winter and to drive realistic buoyancy loss and mixing responsible for strong convection at the end of winter.


Journal of Geophysical Research | 2016

Observations of open‐ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007‐2013 Period

Loïc Houpert; X. Durrieu de Madron; Pierre Testor; Anthony Bosse; Fabrizio D'Ortenzio; Marie-Noëlle Bouin; Denis Dausse; H. Le Goff; Stéphane Kunesch; Matthieu Labaste; Laurent Coppola; Laurent Mortier; Patrick Raimbault

We present here a unique oceanographic and meteorological data set focus on the deep convection processes. Our results are essentially based on in situ data (mooring, research vessel, glider, and profiling float) collected from a multiplatform and integrated monitoring system (MOOSE: Mediterranean Ocean Observing System on Environment), which monitored continuously the northwestern Mediterranean Sea since 2007, and in particular high-frequency potential temperature, salinity, and current measurements from the mooring LION located within the convection region. From 2009 to 2013, the mixed layer depth reaches the seabed, at a depth of 2330m, in February. Then, the violent vertical mixing of the whole water column lasts between 9 and 12 days setting up the characteristics of the newly formed deep water. Each deep convection winter formed a new warmer and saltier “vintage” of deep water. These sudden inputs of salt and heat in the deep ocean are responsible for trends in salinity (3.3 ± 0.2 × 10−3/yr) and potential temperature (3.2 ± 0.5 × 10−3 C/yr) observed from 2009 to 2013 for the 600–2300 m layer. For the first time, the overlapping of the three “phases” of deep convection can be observed, with secondary vertical mixing events (2–4 days) after the beginning of the restratification phase, and the restratification/spreading phase still active at the beginning of the following deep convection event.


Journal of Physical Oceanography | 2003

Large-Scale Spreading of Deep Waters in the Western Mediterranean Sea by Submesoscale Coherent Eddies

Pierre Testor; Jean-Claude Gascard

Abstract Two large-scale free-drifting isobaric-floats experiments, “SOFARGOS”/Marine Science and Technology Programme, phase 2 (MAST2) and Mass Transfer and Ecosystem Response (MATER)/MAST3, undertaken in 1994–95 in the northwestern Mediterranean Sea and in 1997–98 in the Algerian Basin, respectively, have revealed for the first time that Western Mediterranean Deep Water, newly formed by deep convection in the Gulf of Lion (the so-called Medoc site), can be advected several hundreds of kilometers away from the formation area by anticyclonic submesoscale coherent vortices (SCVs). This behavior implies that SCVs participate actively in the large-scale thermohaline circulation and deep ventilation of the western Mediterranean Sea. These SCVs are characterized by small radius (∼5 km), very low potential vorticity, high aspect ratio (∼0.1), and extended lifetime (>0.5 yr).


Science | 2015

Environmental characteristics of Agulhas rings affect interocean plankton transport

Emilie Villar; Gregory K. Farrant; Michael J. Follows; Laurence Garczarek; Sabrina Speich; Stéphane Audic; Lucie Bittner; Bruno Blanke; Jennifer R. Brum; Christophe Brunet; Raffaella Casotti; Alison Chase; John R. Dolan; Jean-Pierre Gattuso; Nicolas Grima; Lionel Guidi; Chris Hill; Oliver Jahn; Jean-Louis Jamet; Cyrille Lepoivre; Shruti Malviya; Eric Pelletier; Jean-Baptiste Romagnan; Simon Roux; Sébastien Santini; Eleonora Scalco; Sarah M. Schwenck; Atsuko Tanaka; Pierre Testor; Thomas Vannier

Agulhas rings provide the principal route for ocean waters to circulate from the Indo-Pacific to the Atlantic basin. Their influence on global ocean circulation is well known, but their role in plankton transport is largely unexplored. We show that, although the coarse taxonomic structure of plankton communities is continuous across the Agulhas choke point, South Atlantic plankton diversity is altered compared with Indian Ocean source populations. Modeling and in situ sampling of a young Agulhas ring indicate that strong vertical mixing drives complex nitrogen cycling, shaping community metabolism and biogeochemical signatures as the ring and associated plankton transit westward. The peculiar local environment inside Agulhas rings may provide a selective mechanism contributing to the limited dispersal of Indian Ocean plankton populations into the Atlantic.


Journal of Geophysical Research | 2015

Spreading of Levantine Intermediate Waters by submesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders

Anthony Bosse; Pierre Testor; Laurent Mortier; Louis Prieur; Vincent Taillandier; Fabrizio D'Ortenzio; Laurent Coppola

Since 2007, gliders have been regularly deployed in the northwestern Mediterranean Sea, a crucial region regarding the thermohaline circulation of the Mediterranean Sea. It revealed for the first time very warm (10.48C) and saline (10.1) submesoscale anticyclones at intermediate depth characterized by a small radius (


Journal of Geophysical Research | 2016

High resolution modeling of dense water formation in the north-western Mediterranean during winter 2012-2013: Processes and budget

Claude Estournel; Pierre Testor; Pierre Damien; Fabrizio D’Ortenzio; Patrick Marsaleix; Pascal Conan; Faycal Kessouri; Xavier Durrieu de Madron; Laurent Coppola; Jean-Michel Lellouche; Sophie Belamari; Laurent Mortier; Caroline Ulses; Marie-Noëlle Bouin; Louis Prieur

5 km), high Rossby (


Journal of Geophysical Research | 2005

The mean circulation of the southwestern Mediterranean Sea: Algerian Gyres

Pierre Testor; Uwe Send; Jean-Claude Gascard; Claude Millot; Isabelle Taupier-Letage; Karine Béranger

0.3), and Burger (


Geophysical Research Letters | 2014

Observing mixed layer depth, nitrate and chlorophyll concentrations in the northwestern Mediterranean: A combined satellite and NO3 profiling floats experiment

Fabrizio D'Ortenzio; Héloïse Lavigne; Florent Besson; Hervé Claustre; Laurent Coppola; Nicole Garcia; Agathe Laes-Huon; Serge Le Reste; Damien Malardé; Christophe Migon; Pascal Morin; Laurent Mortier; Antoine Poteau; Louis Prieur; Patrick Raimbault; Pierre Testor

0.7) numbers. They are likely order of 10 to be formed each year, have a life time order a year and certainly contribute significantly to the spreading of the Levantine Intermediate Waters (LIW) toward the whole subbasin, thus potentially impacting wintertime vertical mixing through hydrographical and dynamical preconditioning. They could be mainly formed by the combined action of turbulent mixing and flow detachment of the northward flow of LIW at the northwestern headland of Sardinia. Upwelling conditions along the western coast of Sardinia associated with a southward geostrophic flow within the upper layers seem to play a key role in their formation process.

Collaboration


Dive into the Pierre Testor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loïc Houpert

Scottish Association for Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge