Pierre Vaigot
Collège de France
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre Vaigot.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Elisabeth Dupin; Carla Real; Corinne Glavieux-Pardanaud; Pierre Vaigot; Nicole M. Le Douarin
In vertebrate embryos, diversification of the lineages arising from the neural crest (NC) is controlled to a large extent by environmental factors. In previous work, we showed that endothelin 3 (ET3) peptide favors the development of glial and melanocytic NC precursors in vitro. This factor is also capable of inducing proliferation of cultured epidermal pigment cells and their conversion to glia. ET3 therefore strongly promotes the emergence of melanocytic and glial phenotypes from precursors and acts on the maintenance of these phenotypes. In the present work, we explored the capacity of ET3 to reprogram glial cells into melanocytes. Schwann cells expressing glial-specific markers [such as the Schwann cell myelin protein (SMP)] were isolated from sciatic nerves of quail embryos and cultured in vitro. We found that ET3 promotes cell growth and sequential expression of melanocyte differentiation markers in cultures of purified SMP-expressing cells, whereas it had no significant effect on SMP-negative cells from the same nerves. Moreover, we provide evidence for the transition of differentiated Schwann cells to melanocytes in clonal cultures. This transition involves the production of a mixed progeny of melanoblasts/melanocytes, glia, and cells bearing differentiation markers of both phenotypes. Therefore, Schwann cells exposed to ET3 transdifferentiate to melanocytes through reversion to the stage of bipotent glial-melanocytic NC precursors. These findings show that NC-derived pigment and glial cells are phenotypically unstable in vitro and may undergo reversal of precursor hierarchy to function as bipotent stem cells.
Stem Cells | 2006
Gaëlle Larderet; Nicolas O. Fortunel; Pierre Vaigot; Marine Cegalerba; Peggy Maltère; Olivia Zobiri; Xavier Gidrol; Michèle T. Martin
The aim of the present study was to characterize human side population (SP) epidermal keratinocytes isolated from primary cell cultures. For that purpose, keratinocytes were isolated from normal adult breast skin samples and the Hoechst 33342 exclusion assay described for hematopoietic cells was adapted to keratinocytes. Three types of keratinocytes were studied: the SP, the main population (MP), and the unsorted initial population. SP keratinocytes represented 0.16% of the total population. In short‐term cultures, they exhibited an increased colony‐forming efficiency and produced more actively growing colonies than did unsorted and MP keratinocytes. In long‐term cultures, SP cells exhibited an extensive expansion potential, performing a mean of 44 population doublings for up to 12 successive passages after cell sorting. Moreover, even in long‐term cultures, SP keratinocytes were able to form a pluristratified epidermis when seeded on a dermal substrate. Unsorted and MP keratinocytes promoted a reduced expansion: mean values of 14 population doublings for five passages and 12 population doublings for four successive passages, respectively. To further characterize SP cells, cDNA microarrays were used to identify their molecular signature. Transcriptome profiling showed that 41 genes were differentially expressed in SP (vs. MP) cells, with 37 upregulated genes and only four downregulated genes in SP cells. The majority of these genes were functionally related to the regulation of transcription and cell signaling. In conclusion, SP human keratinocytes isolated from primary cultures exhibited both short‐ and long‐term high proliferative potential, formed a pluristratified epidermis, and were characterized by a specific gene expression profile.
Cellular Immunology | 1992
Catherine Corbel; Harry G. Bluestein; Olivier Pourquié; Pierre Vaigot; Nicole M. Le Douarin
A monoclonal antibody, anti-BEN, initially characterized by its reactivity with an epitope present on the surface of avian bursa epithelial cells and neurons, also reacts with membrane molecules on some hemopoietic cells. In this study we examine BEN expression on lymphoid cells in thymus, spleen, and blood. We demonstrate that BEN is an activation antigen on mature T lymphocytes. It is not expressed on peripheral blood or splenic lymphocytes, but following mitogenic or allogeneic stimulation of blood lymphocytes it appears rapidly on a T cell subpopulation in parallel with the appearance of IL-2 receptors. BEN is also expressed on III-C5 cells, an avian IL-2-dependent permanent T cell line, and on immature CD4+CD8+ thymocytes. BEN is not expressed by resting or actively proliferating B cells. Biochemical analyses of the BEN protein on T lymphoblasts shows that the molecule is similar in size to the BEN molecules on bursa epithelial cells and on neurons. The physicochemical properties of the BEN protein and its tissue distribution differs from other known avian and mammalian T cell activation markers, differentiation antigens, and integrins. Thus BEN is a novel marker of activated T cells in birds.
BMC Genomics | 2009
Jernej Murn; Irena Mlinarič-Raščan; Pierre Vaigot; Olivier Alibert; Vincent Frouin; Xavier Gidrol
BackgroundThe B cell antigen receptor (BCR) is a signaling complex that mediates the differentiation of stage-specific cell fate decisions in B lymphocytes. While several studies have shown differences in signal transduction components as being key to contrasting phenotypic outcomes, little is known about the differential BCR-triggered gene transcription downstream of the signaling cascades.ResultsHere we define the transcriptional changes that underlie BCR-induced apoptosis and proliferation of immature and mature B cells, respectively. Comparative genome-wide expression profiling identified 24 genes that discriminated between the early responses of the two cell types to BCR stimulation. Using mice with a conditional Myc-deletion, we validated the microarray data by demonstrating that Myc is critical to promoting BCR-triggered B-cell proliferation. We further investigated the Myc- dependent molecular mechanisms and found that Myc promotes a BCR-dependent clonal expansion of mature B cells by inducing proliferation and inhibiting differentiation.ConclusionThis work provides the first comprehensive analysis of the early transcriptional events that lead to either deletion or clonal expansion of B cells upon antigen recognition, and demonstrates that Myc functions as the hub of a transcriptional network that control B-cell fate in the periphery.
Radiation Research | 2011
Alexandre Pawlik; Olivier Alibert; Sylvain Baulande; Pierre Vaigot; Diana Tronik-Le Roux
Abstract Ionizing radiation causes rapid and acute suppression of hematopoietic cells that manifests as the hematopoietic syndrome. However, the roles of molecules and regulatory pathways induced in vivo by irradiation of different hematopoietic cells have not been completely elaborated. Using a strategy that combined different microarray bioinformatics tools, we identified gene networks that might be involved in the early response of hematopoietic cells radiation response in vivo. The grouping of similar time-ordered gene expression profiles using quality threshold clustering enabled the successful identification of common binding sites for 56 transcription factors that may be involved in the regulation of the early radiation response. We also identified novel genes that are responsive to the transformation-related protein 53; all of these genes were biologically validated in p53-transgenic null mice. Extension of the analysis to purified bone marrow cells including highly purified long-term hematopoietic stem cells, combined with functional classification, provided evidence of gene expression modifications that were largely unknown in this primitive population. Our methodology proved particularly useful for analyzing the transcriptional regulation of the complex ionizing radiation response of hematopoietic cells. Our data may help to elucidate the molecular mechanisms involved in tissue radiosensitivity and to identify potential targets for improving treatment in radiation emergencies.
Scandinavian Journal of Immunology | 1997
V. Thomas‐Vaslin; Josselyne Salaün; Monique Coltey; Pierre Vaigot; R. Fucs
The survival of T cells derived from the early waves of thymus colonization by haemopoietic cell precursors was investigated by grafting thymus from B6.Thy1.1 day 14 embryos (E14) (first wave) or E17 or newborn thymus (subsequent waves) into allogeneic athymic BALB/c (Thy1.2) nude recipients. The survival of donor‐derived Thy1.1 cells was longer when they were derived from early thymocytes. Donor B6.Thy1.1 Vβ5 and Vβ11 T cells, although maturing in BALB/c host presenting Mls2a superantigens, were not deleted, in contrast to host Thy1.2 T cells differentiating from endogenous stem cells. These results show that the population of T cells derived from early precursors undergoes particular selection characteristics, which favour the inclusion of potentially autoreactive cells with prolonged survival, even in H‐2 allogeneic conditions which normally do not allow the survival of peripheral T cells.
Immunogenetics | 1991
Dominique Piatier-Tonneau; Louis-Noel Gastinel; François Amblard; Marianne Wojcik; Pierre Vaigot; Charles Auffray
We have developed a cellular adhesion assay in which B lymphocytes expressing HLA class II antigens form rosettes with COS cells expressing high levels of cell surface CD4 upon transient transfection with a CDM8-CD4 plasmid construct. The assay is specific, quantitative, and overcomes the difficulties encountered with a previously described system using an SV40 viral vector. Rosette formation was inhibited by a series of CD4- and HLA-DR-specific antibodies, as well as by human immunodeficiency virus (HIV) gp 120, and a synthetic peptide derived from part of its binding site for CD4 (amino acid residues 414-434), but not by a variety of other effectors, including several soluble CD4 derivatives. The comparison of this pattern of inhibition with those observed in other systems further emphasizes the great similarity, but incomplete identity, in the CD4 binding sites for HLA class II antigens and HIV gp120, and supports a model in which CD4 is considered as an allosteric servomodulator of T-cell adhesion and function which probably is induced to interact with HLA class II antigens when associated with the Tcr/CD3 complex.
Radiation Research | 2015
Diana Tronik-Le Roux; Marie-Anne Nicola; Pierre Vaigot; Paquita Nurden
Hematopoietic stem cells (HSC) are essential for maintaining the integrity of complex and long-lived organisms. HSC, which are self-renewing, reconstitute the hematopoietic system through out life and facilitate long-term repopulation of myeloablated recipients. We have previously demonstrated that when mice are exposed to sublethal doses of ionizing radiation, subsets of the stem/progenitor compartment are affected. In this study we examine the role of thrombopoietin (TPO) on the regenerative capacities of HSC after irradiation and report the first demonstration of efficacy of a single injection of TPO shortly after in vivo exposure to ionizing radiation for reducing HSC injury and improving their functional outcome. Our results demonstrate that TPO treatment not only reduced the number of apoptotic cells but also induced a significant modification of their intrinsic characteristics. These findings were supported by transplantation assays with long-term HSC that were irradiated or unirradiated, TPO treated or untreated, in CD45.1/CD45.2 systems and by using luciferase-labeled HSC for direct bioluminescence imaging in living animals. Of particular importance, our data demonstrate the skull to be a highly favorable site for the TPO-induced emergence of hematopoietic cells after irradiation, suggesting a TPO-mediated relationship of primitive hematopoietic cells to an anatomical component. Together, the data presented here: provide novel findings about aspects of TPO action on stem cells, open new areas of investigation for therapeutic options in patients who are treated with radiation therapy, and show that early administration of a clinically suitable TPO-agonist counteracts the previously observed adverse effects.
Proceedings of the National Academy of Sciences of the United States of America | 1997
Anne Eichmann; Catherine Corbel; Valérie Nataf; Pierre Vaigot; Christiane Bréant; Nicole M. Le Douarin
Proceedings of the National Academy of Sciences of the United States of America | 2000
Elisabeth Dupin; Corinne Glavieux; Pierre Vaigot; Nicole M. Le Douarin