Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierrick Bourgeat is active.

Publication


Featured researches published by Pierrick Bourgeat.


Lancet Neurology | 2013

Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study

Victor L. Villemagne; Samantha Burnham; Pierrick Bourgeat; Belinda M. Brown; K. Ellis; Olivier Salvado; Cassandra Szoeke; S. Lance Macaulay; Ralph N. Martins; Paul Maruff; David Ames; Christopher C. Rowe; Colin L. Masters

BACKGROUND Similar to most chronic diseases, Alzheimers disease (AD) develops slowly from a preclinical phase into a fully expressed clinical syndrome. We aimed to use longitudinal data to calculate the rates of amyloid β (Aβ) deposition, cerebral atrophy, and cognitive decline. METHODS In this prospective cohort study, healthy controls, patients with mild cognitive impairment (MCI), and patients with AD were assessed at enrolment and every 18 months. At every visit, participants underwent neuropsychological examination, MRI, and a carbon-11-labelled Pittsburgh compound B ((11)C-PiB) PET scan. We included participants with three or more (11)C-PiB PET follow-up assessments. Aβ burden was expressed as (11)C-PiB standardised uptake value ratio (SUVR) with the cerebellar cortex as reference region. An SUVR of 1·5 was used to discriminate high from low Aβ burdens. The slope of the regression plots over 3-5 years was used to estimate rates of change for Aβ deposition, MRI volumetrics, and cognition. We included those participants with a positive rate of Aβ deposition to calculate the trajectory of each variable over time. FINDINGS 200 participants (145 healthy controls, 36 participants with MCI, and 19 participants with AD) were assessed at enrolment and every 18 months for a mean follow-up of 3·8 (95% CI CI 3·6-3·9) years. At baseline, significantly higher Aβ burdens were noted in patients with AD (2·27, SD 0·43) and those with MCI (1·94, 0·64) than in healthy controls (1·38, 0·39). At follow-up, 163 (82%) of the 200 participants showed positive rates of Aβ accumulation. Aβ deposition was estimated to take 19·2 (95% CI 16·8-22·5) years in an almost linear fashion-with a mean increase of 0·043 (95% CI 0·037-0·049) SUVR per year-to go from the threshold of (11)C-PiB positivity (1·5 SUVR) to the levels observed in AD. It was estimated to take 12·0 (95% CI 10·1-14·9) years from the levels observed in healthy controls with low Aβ deposition (1·2 [SD 0·1] SUVR) to the threshold of (11)C-PiB positivity. As AD progressed, the rate of Aβ deposition slowed towards a plateau. Our projections suggest a prolonged preclinical phase of AD in which Aβ deposition reaches our threshold of positivity at 17·0 (95% CI 14·9-19·9) years, hippocampal atrophy at 4·2 (3·6-5·1) years, and memory impairment at 3·3 (2·5-4·5) years before the onset of dementia (clinical dementia rating score 1). INTERPRETATION Aβ deposition is slow and protracted, likely to extend for more than two decades. Such predictions of the rate of preclinical changes and the onset of the clinical phase of AD will facilitate the design and timing of therapeutic interventions aimed at modifying the course of this illness. FUNDING Science and Industry Endowment Fund (Australia), The Commonwealth Scientific and Industrial Research Organisation (Australia), The National Health and Medical Research Council of Australia Program and Project Grants, the Austin Hospital Medical Research Foundation, Victorian State Government, The Alzheimers Drug Discovery Foundation, and the Alzheimers Association.


Neurobiology of Aging | 2010

Amyloid imaging results, from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging

Christopher C. Rowe; K. Ellis; Miroslava Rimajova; Pierrick Bourgeat; Kerryn E. Pike; Gareth Jones; Jurgen Fripp; Henri Tochon-Danguy; Laurence Morandeau; Graeme O'Keefe; Roger I. Price; Parnesh Raniga; Peter Robins; Oscar Acosta; Nat Lenzo; Cassandra Szoeke; Olivier Salvado; Richard Head; Ralph N. Martins; Colin L. Masters; David Ames; Victor L. Villemagne

The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, a participant of the worldwide Alzheimers Disease Neuroimaging Initiative (ADNI), performed (11)C-Pittsburgh Compound B (PiB) scans in 177 healthy controls (HC), 57 mild cognitive impairment (MCI) subjects, and 53 mild Alzheimers disease (AD) patients. High PiB binding was present in 33% of HC (49% in ApoE-epsilon4 carriers vs 21% in noncarriers) and increased with age, most strongly in epsilon4 carriers. 18% of HC aged 60-69 had high PiB binding rising to 65% in those over 80 years. Subjective memory complaint was only associated with elevated PiB binding in epsilon4 carriers. There was no correlation with cognition in HC or MCI. PiB binding in AD was unrelated to age, hippocampal volume or memory. Beta-amyloid (Abeta) deposition seems almost inevitable with advanced age, amyloid burden is similar at all ages in AD, and secondary factors or downstream events appear to play a more direct role than total beta amyloid burden in hippocampal atrophy and cognitive decline.


Annals of Neurology | 2011

Longitudinal Assessment of Aβ and Cognition in Aging and Alzheimer Disease

Victor L. Villemagne; Kerryn E. Pike; Gaël Chételat; K. Ellis; Rachel S. Mulligan; Pierrick Bourgeat; Uwe Ackermann; Gareth Jones; Cassandra Szoeke; Olivier Salvado; Ralph N. Martins; Graeme O'Keefe; Chester A. Mathis; William E. Klunk; David Ames; Colin L. Masters; Christopher C. Rowe

Assess Aβ deposition longitudinally and explore its relationship with cognition and disease progression.


Annals of Neurology | 2010

Relationship between atrophy and β‐amyloid deposition in Alzheimer disease

Gaël Chételat; Victor L. Villemagne; Pierrick Bourgeat; Kerryn E. Pike; Gareth J. F. Jones; David Ames; K. Ellis; Cassandra Szoeke; Ralph N. Martins; Graeme O'Keefe; Olivier Salvado; Colin L. Masters; Christopher C. Rowe

Elucidating the role of aggregated β‐amyloid in relation to gray matter atrophy is crucial to the understanding of the pathological mechanisms of Alzheimer disease and for the development of therapeutic trials. The present study aims to assess this relationship.


Neurology | 2010

β-Amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly subjects without dementia

Pierrick Bourgeat; Gaël Chételat; Victor L. Villemagne; J. Fripp; P. Raniga; Kerryn E. Pike; O. Acosta; Cassandra Szoeke; Sebastien Ourselin; David Ames; K. Ellis; Ralph N. Martins; Colin L. Masters; Christopher C. Rowe; Olivier Salvado

Objective: To investigate whether global and regional β-amyloid (Aβ) burden as measured with 11C Pittsburgh compound B (PIB) PET is associated with hippocampal atrophy characterized using MRI in healthy controls and patients with amnestic mild cognitive impairment (aMCI) or Alzheimer disease (AD). Methods: Ninety-two elderly healthy controls, 32 subjects with aMCI, and 35 patients with AD were imaged using 11C-PIB PET and MRI. Hippocampal volume was measured and PIB standardized uptake value ratio was extracted after partial volume correction within 41 regions of interest. Global, regional, and voxel-based correlations between PIB and hippocampal volume were computed for each group. Results: In healthy control participants with elevated neocortex PIB retention, significant correlation was found between PIB retention in the inferior temporal region and hippocampal volume using both region-based and voxel-based approaches. No correlation was found in any other group. Conclusions: The strong correlation between hippocampal atrophy and β-amyloid (Aβ) burden in the Pittsburgh compound B–positive healthy control group suggests that Aβ deposition in the inferior temporal neocortex is related to hippocampal synaptic and neuronal degeneration.


Annals of Neurology | 2013

Predicting Alzheimer disease with β-amyloid imaging: results from the Australian imaging, biomarkers, and lifestyle study of ageing

Christopher C. Rowe; Pierrick Bourgeat; K. Ellis; Belinda M. Brown; Yen Ying Lim; Rachel S. Mulligan; Gareth Jones; Paul Maruff; Michael Woodward; Roger I. Price; Peter Robins; Henri Tochon-Danguy; Graeme O'Keefe; Kerryn E. Pike; Patsy Yates; Cassandra Szoeke; Olivier Salvado; S. Lance Macaulay; Timothy O'Meara; Richard Head; Lynne Cobiac; Greg Savage; Ralph N. Martins; Colin L. Masters; David Ames; Victor L. Villemagne

Biomarkers for Alzheimer disease (AD) can detect the disease pathology in asymptomatic subjects and individuals with mild cognitive impairment (MCI), but their cognitive prognosis remains uncertain. We aimed to determine the prognostic value of β‐amyloid imaging, alone and in combination with memory performance, hippocampal atrophy, and apolipoprotein E ε4 status in nondemented, older individuals.


JAMA Neurology | 2013

Cross-sectional and Longitudinal Analysis of the Relationship Between Aβ Deposition, Cortical Thickness, and Memory in Cognitively Unimpaired Individuals and in Alzheimer Disease

Vincent Dore; Victor L. Villemagne; Pierrick Bourgeat; Jurgen Fripp; Oscar Acosta; Gaël Chételat; Luping Zhou; Ralph N. Martins; K. Ellis; Colin L. Masters; David Ames; Oliver Salvado; Christopher C. Rowe

IMPORTANCE β-amyloid (Aβ) deposition is one of the hallmarks of Alzheimer disease. Aβ deposition accelerates gray matter atrophy at early stages of the disease even before objective cognitive impairment is manifested. Identification of at-risk individuals at the presymptomatic stage has become a major research interest because it will allow early therapeutic interventions before irreversible synaptic and neuronal loss occur. We aimed to further characterize the cross-sectional and longitudinal relationship between Aβ deposition, gray matter atrophy, and cognitive impairment. OBJECTIVE To investigate the topographical relationship of Aβ deposition, gray matter atrophy, and memory impairment in asymptomatic individuals with Alzheimer disease pathology as assessed by Pittsburgh compound B positron emission tomography (PiB-PET). DESIGN Regional analysis was performed on the cortical surface to relate cortical thickness to PiB retention and episodic memory. SETTING The Australian Imaging, Biomarkers, and Lifestyle Study of Aging, Austin Hospital, Melbourne, Australia. PARTICIPANTS Ninety-three healthy elderly control subjects (NCs) and 40 patients with Alzheimer disease from the Australian Imaging, Biomarkers, and Lifestyle Study of Aging cohort. INTERVENTION Participants underwent neuropsychological evaluation as well as magnetic resonance imaging and PiB-PET scans. Fifty-four NCs underwent repeated scans and neuropsychological evaluation 18 and 36 months later. MAIN OUTCOMES AND MEASURES Correlations between cortical thickness, PiB retention, and episodic memory. RESULTS There was a significant reduction in cortical thickness in the precuneus and hippocampus associated with episodic memory impairment in the NC PiB-positive (NC+) group when compared with the NC- group. Cortical thickness was also correlated negatively with neocortical PiB in the NC+ group. Longitudinal analysis showed a faster rate of gray matter (GM) atrophy in the temporal lobe and the hippocampi of the NC+ group. Over time, GM atrophy became more extensive in the NC+ group, especially in the temporal lobe. CONCLUSIONS AND RELEVANCE In asymptomatic individuals, Aβ deposition is associated with GM atrophy and memory impairment. The earliest signs of GM atrophy were detected in the hippocampus and the posterior cingulate and precuneus regions, and with disease progression, atrophy became more extensive in the temporal lobes. These findings support the notion that Aβ deposition is not a benign process and that interventions with anti-Aβ therapy at these early stages have a higher chance to be effective.


Brain | 2011

Independent contribution of temporal β-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer's disease

Gaël Chételat; Victor L. Villemagne; Kerryn E. Pike; K. Ellis; Pierrick Bourgeat; Gareth Jones; Graeme O'Keefe; Olivier Salvado; Cassandra Szoeke; Ralph N. Martins; David Ames; Colin L. Masters; Christopher C. Rowe

The relationship between β-amyloid deposition and memory deficits in early Alzheimers disease is unresolved, as past studies show conflicting findings. The present study aims to determine the relative contribution of regional β-amyloid deposition, hippocampal atrophy and white matter integrity to episodic memory deficits in non-demented older individuals harbouring one of the characteristic hallmarks of Alzheimers disease, i.e. with β-amyloid pathology. Understanding these relationships is critical for effective therapeutic development. Brain magnetic resonance imaging and [(11)C]Pittsburgh Compound B-positron emission tomography scans were obtained in 136 non-demented individuals aged over 60 years, including 93 healthy elderly and 43 patients with mild cognitive impairment. Voxel-based correlations were computed between a memory composite score and grey matter volume, white matter volume and β-amyloid deposition imaging datasets. Hierarchical linear regression analyses were then performed using values extracted in regions of most significant correlations to determine the relative contribution of each modality to memory deficits. All analyses were conducted pooling all groups together as well as within separate subgroups of cognitively normal elderly, patients with mild cognitive impairment and individuals with high versus low neocortical β-amyloid. Brain areas of highest correlation with episodic memory deficits were the hippocampi for grey matter volume, the perforant path for white matter volume and the temporal neocortex for β-amyloid deposition. When considering these three variables together, only hippocampal volume and temporal β-amyloid deposition provided independent contributions to memory deficits. In contrast to global β-amyloid deposition, temporal β-amyloid deposition was still related to memory independently from hippocampal atrophy within subgroups of cognitively normal elderly, patients with mild cognitive impairment or cases with high neocortical β-amyloid. In the pre-dementia stage of Alzheimers disease, subtle episodic memory impairment is related to β-amyloid deposition, especially in the temporal neocortex, and independently from hippocampal atrophy, suggesting that both factors should be independently targeted in therapeutic trials aimed at reducing cognitive decline.


Translational Psychiatry | 2013

Retinal vascular biomarkers for early detection and monitoring of Alzheimer's disease.

Shawn Frost; Yogi Kanagasingam; Hamid R. Sohrabi; Janardhan Vignarajan; Pierrick Bourgeat; Olivier Salvado; Victor L. Villemagne; Christopher C. Rowe; S. Lance Macaulay; Cassandra Szoeke; K. Ellis; David Ames; Colin L. Masters; Stephanie R. Rainey-Smith; Ralph N. Martins

The earliest detectable change in Alzheimer’s disease (AD) is the buildup of amyloid plaque in the brain. Early detection of AD, prior to irreversible neurological damage, is important for the efficacy of current interventions as well as for the development of new treatments. Although PiB-PET imaging and CSF amyloid are the gold standards for early AD diagnosis, there are practical limitations for population screening. AD-related pathology occurs primarily in the brain, but some of the hallmarks of the disease have also been shown to occur in other tissues, including the retina, which is more accessible for imaging. Retinal vascular changes and degeneration have previously been reported in AD using optical coherence tomography and laser Doppler techniques. This report presents results from analysis of retinal photographs from AD and healthy control participants from the Australian Imaging, Biomarkers and Lifestyle (AIBL) Flagship Study of Ageing. This is the first study to investigate retinal blood vessel changes with respect to amyloid plaque burden in the brain. We demonstrate relationships between retinal vascular parameters, neocortical brain amyloid plaque burden and AD. A number of RVPs were found to be different in AD. Two of these RVPs, venular branching asymmetry factor and arteriolar length-to-diameter ratio, were also higher in healthy individuals with high plaque burden (P=0.01 and P=0.02 respectively, after false discovery rate adjustment). Retinal photographic analysis shows potential as an adjunct for early detection of AD or monitoring of AD-progression or response to treatments.


Medical Image Analysis | 2009

Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian–Eulerian PDE approach using partial volume maps

Oscar Acosta; Pierrick Bourgeat; Maria A. Zuluaga; Jurgen Fripp; Olivier Salvado; Sebastien Ourselin

Accurate cortical thickness estimation is important for the study of many neurodegenerative diseases. Many approaches have been previously proposed, which can be broadly categorised as mesh-based and voxel-based. While the mesh-based approaches can potentially achieve subvoxel resolution, they usually lack the computational efficiency needed for clinical applications and large database studies. In contrast, voxel-based approaches, are computationally efficient, but lack accuracy. The aim of this paper is to propose a novel voxel-based method based upon the Laplacian definition of thickness that is both accurate and computationally efficient. A framework was developed to estimate and integrate the partial volume information within the thickness estimation process. Firstly, in a Lagrangian step, the boundaries are initialized using the partial volume information. Subsequently, in an Eulerian step, a pair of partial differential equations are solved on the remaining voxels to finally compute the thickness. Using partial volume information significantly improved the accuracy of the thickness estimation on synthetic phantoms, and improved reproducibility on real data. Significant differences in the hippocampus and temporal lobe between healthy controls (NC), mild cognitive impaired (MCI) and Alzheimers disease (AD) patients were found on clinical data from the ADNI database. We compared our method in terms of precision, computational speed and statistical power against the Eulerian approach. With a slight increase in computation time, accuracy and precision were greatly improved. Power analysis demonstrated the ability of our method to yield statistically significant results when comparing AD and NC. Overall, with our method the number of samples is reduced by 25% to find significant differences between the two groups.

Collaboration


Dive into the Pierrick Bourgeat's collaboration.

Top Co-Authors

Avatar

Olivier Salvado

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Ames

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Jurgen Fripp

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Dore

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

K. Ellis

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Parnesh Raniga

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge