Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierrot Harvie is active.

Publication


Featured researches published by Pierrot Harvie.


Leukemia Research | 2009

In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy

Paul Tardi; Sharon Johnstone; Natashia Harasym; Sherwin Xie; Troy Harasym; Natalia Zisman; Pierrot Harvie; David Bermudes; Lawrence Mayer

We demonstrate here that cytarabine and daunorubicin, a standard drug combination used in the treatment of leukaemia, exhibits drug ratio-dependent synergistic antitumor activity in vitro and in vivo. A cytarabine:daunorubicin molar ratio of 5:1 displayed the greatest degree of synergy and minimum antagonism in a panel of 15 tumor cell lines in vitro. Co-encapsulating cytarabine and daunorubicin inside liposomes maintained the synergistic drug ratio in plasma for 24h post-injection. Liposome-encapsulated cytarabine:daunorubicin combinations exhibited drug ratio-dependent in vivo efficacy with the 5:1 molar drug ratio (designated CPX-351) having the greatest therapeutic index, despite using sub-MTD daunorubicin doses. CPX-351 exhibited superior therapeutic activity compared to free-drug cocktails, with high proportions of long-term survivors, consistent with in vivo synergy. The therapeutic advantage of CPX-351 was associated with prolonged maintenance of synergistic drug ratios in bone marrow. These results indicate that in vitro informatics on cytarabine:daunorubicin cytotoxicity can be translated in vivo to optimize the efficacy of anticancer drug combinations by controlling the exposure of drug ratios with drug delivery vehicles.


Journal of Pharmaceutical Sciences | 2000

Use of Poly(ethylene glycol)–Lipid Conjugates to Regulate the Surface Attributes and Transfection Activity of Lipid–DNA Particles

Pierrot Harvie; Frances M.P. Wong; Marcel B. Bally

We evaluated the use of poly(ethylene glycol) (PEG)-modified lipids to control the surface properties of a lipid-based gene transfer system. The lipid-DNA particles (LDPs) used form spontaneously when plasmid DNA is added to mixed detergent lipid micelles consisting of the non-ionic detergent n-octyl-D-glucopyranoside, the cationic lipid dioleyldimethylammonium chloride (DODAC), the zwitterionic lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and selected PEG-modified phosphatidylethanolamines. The inclusion of DODAC is required to form the hydrophobic lipid-DNA complex. DOPE is included to facilitate dissociation of DNA from the cationic lipid and the PEG-modified lipids are added in an effort to stabilize the surface attributes of the resulting lipid-DNA particles. We used PEG-lipids that varied in acyl chain composition because of recent results demonstrating acyl chain dependent transfer of PEG-lipids from lipid vesicles, providing the potential to allow a transformation of the surface properties due to loss of surface grafted PEG. The addition of PEG-modified lipids does not interfere in LDP formation and its presence favors formation of smaller particles (75 nm in contrast to 130 nm in the absence of the PEG-modified lipid). PEG-lipid incorporation causes a concentration dependent reduction in LDP-mediated transfection of B16/BL6 melanoma cells, a result that can be partially attributed to a reduction in particle binding to cells. However, significant LDP binding to B16/BL6 cells was still observed under conditions where LDP transfection activity was reduced by more than 85%. The potential for PEG to interfere with LDP processing following cell binding is discussed.


Biophysical Journal | 1998

Characterization of lipid DNA interactions. I. Destabilization of bound lipids and DNA dissociation.

Pierrot Harvie; Frances M.P. Wong; Marcel B. Bally

We have recently described a method for preparing lipid-based DNA particles (LDPs) that form spontaneously when detergent-solubilized cationic lipids are mixed with DNA. LDPs have the potential to be developed as carriers for use in gene therapy. More importantly, the lipid-DNA interactions that give rise to particle formation can be studied to gain a better understanding of factors that govern lipid binding and lipid dissociation. In this study the stability of lipid-DNA interactions was evaluated by measurement of DNA protection (binding of the DNA intercalating dye TO-PRO-1 and sensitivity to DNase I) and membrane destabilization (lipid mixing reactions measured by fluorescence resonance energy transfer techniques) after the addition of anionic liposomes. Lipid-based DNA transfer systems were prepared with pInexCAT v.2.0, a 4.49-kb plasmid expression vector that contains the marker gene for chloramphenicol acetyltransferase (CAT). LDPs were prepared using N-N-dioleoyl-N,N-dimethylammonium chloride (DODAC) and either 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). For comparison, liposome/DNA aggregates (LDAs) were also prepared by using preformed DODAC/DOPE (1:1 mole ratio) and DODAC/DOPC (1:1 mole ratio) liposomes. The addition of anionic liposomes to the lipid-based DNA formulations initiated rapid membrane destabilization as measured by the resonance energy transfer lipid-mixing assay. It is suggested that lipid mixing is a reflection of processes (contact, dehydration, packing defects) that lead to formulation disassembly and DNA release. This destabilization reaction was associated with an increase in DNA sensitivity to DNase I, and anionic membrane-mediated destabilization was not dependent on the incorporation of DOPE. These results are interpreted in terms of factors that regulate the disassembly of lipid-based DNA formulations.


Oncology Research | 2006

Increased preclinical efficacy of irinotecan and floxuridine coencapsulated inside liposomes is associated with tumor delivery of synergistic drug ratios.

Troy Harasym; Paul Tardi; Natashia Harasym; Pierrot Harvie; Sharon Johnstone; Lawrence D. Mayer

Whether anticancer drug combinations act synergistically or antagonistically often depends on the ratio of the agents being combined. We show here that combinations of irinotecan and floxuridine exhibit drug ratio-dependent cytotoxicity in a broad panel of tumor cell lines in vitro where a 1:1 molar ratio consistently provided synergy and avoided antagonism. In vivo delivery of irinotecan and floxuridine coencapsulated inside liposomes at the synergistic 1:1 molar ratio (referred to as CPX-1) lead to greatly enhanced efficacy compared to the two drugs administered as a saline-based cocktail in a number of human xenograft and murine tumor models. When compared to liposomal irinotecan or liposomal floxuridine, the therapeutic activity of CPX-1 in vivo was not only superior to the individual liposomal agents, but the extent of tumor growth inhibition was greater than that predicted for combining the activities of the individual agents. In contrast, liposome delivery of irinotecan:floxuridine ratios shown to be antagonistic in vitro provided antitumor activity that was actually less than that achieved with liposomal irinotecan alone, indicative of in vivo antagonism. Synergistic antitumor activity observed for CPX-1 was associated with maintenance of the 1:1 irinotecan:floxuridine molar ratio in plasma and tumor tissue over 16-24 h. In contrast, injection of the drugs combined in saline resulted in irinotecan:floxuridine ratios that changed 10-fold within 1 h in plasma and sevenfold within 4 h in tumor tissue. These results indicate that substantial improvements in the efficacy of drug combinations may be achieved by maintaining in vitro-identified synergistic drug ratios after systemic administration using drug delivery vehicles.


Molecular Therapy | 2011

RNAi-based Therapeutics Targeting Survivin and PLK1 for Treatment of Bladder Cancer

Shaguna Seth; Yoshiyuki Matsui; Kathy L. Fosnaugh; Yan Liu; Narendra K. Vaish; Roger C. Adami; Pierrot Harvie; Rachel E. Johns; Gregory Severson; Tod Brown; Akihide Takagi; Susan Bell; Yan Chen; Feng Chen; Tianying Zhu; Renata Fam; Iwona Maciagiewicz; Erin Kwang; Michael McCutcheon; Ken Farber; Patrick Charmley; Michael E. Houston; Alan So; Michael V. Templin; Barry Polisky

Harnessing RNA interference (RNAi) to silence aberrant gene expression is an emerging approach in cancer therapy. Selective inhibition of an overexpressed gene via RNAi requires a highly efficacious, target-specific short interfering RNA (siRNA) and a safe and efficient delivery system. We have developed siRNA constructs (UsiRNA) that contain unlocked nucleobase analogs (UNA) targeting survivin and polo-like kinase-1 (PLK1) genes. UsiRNAs were encapsulated into dialkylated amino acid-based liposomes (DiLA(2)) containing a nor-arginine head group, cholesteryl hemisuccinate (CHEMS), cholesterol and 1, 2-dimyristoyl-phosphatidylethanolamine-polyethyleneglycol 2000 (DMPE-PEG2000). In an orthotopic bladder cancer mouse model, intravesical treatment with survivin or PLK1 UsiRNA in DiLA(2) liposomes at 1.0 and 0.5 mg/kg resulted in 90% and 70% inhibition of survivin or PLK1 mRNA, respectively. This correlated with a dose-dependent decrease in tumor volumes which was sustained over a 3-week period. Silencing of survivin and PLK1 mRNA was confirmed to be RNA-induced silencing complex mediated as specific cleavage products were detected in bladder tumors over the duration of the study. This report suggests that intravesical instillation of survivin or PLK1 UsiRNA can serve as a potential therapeutic modality for treatment of bladder cancer.


Molecular Therapy | 2011

An Amino Acid-based Amphoteric Liposomal Delivery System for Systemic Administration of siRNA

Roger C. Adami; Shaguna Seth; Pierrot Harvie; Rachel E. Johns; Renata Fam; Kathy L. Fosnaugh; Tianying Zhu; Ken Farber; Michael McCutcheon; Thomas T Goodman; Yan Liu; Yan Chen; Erin Kwang; Michael V. Templin; Greg Severson; Tod Brown; Narendra K. Vaish; Feng Chen; Patrick Charmley; Barry Polisky; Michael E. Houston

We demonstrate a systematic and rational approach to create a library of natural and modified, dialkylated amino acids based upon arginine for development of an efficient small interfering RNA (siRNA) delivery system. These amino acids, designated DiLA₂ compounds, in conjunction with other components, demonstrate unique properties for assembly into monodisperse, 100-nm small liposomal particles containing siRNA. We show that DiLA₂-based liposomes undergo a pH-dependent phase transition to an inverted hexagonal phase facilitating efficient siRNA release from endosomes to the cytosol. Using an arginine-based DiLA₂, cationic liposomes were prepared that provide high in vivo siRNA delivery efficiency and are well-tolerated in both cell and animal models. DiLA₂-based liposomes demonstrate a linear dose-response with an ED₅₀ of 0.1 mg/kg against liver-specific target genes in BALB/c mice.


Biochimica et Biophysica Acta | 1999

A multi-step lipid mixing assay to model structural changes in cationic lipoplexes used for in vitro transfection.

Ellen K. Wasan; Pierrot Harvie; Katarina Edwards; Göran Karlsson; Marcel B. Bally

Formation of liposome/polynucleotide complexes (lipoplexes) involves electrostatic interactions, which induce changes in liposome structure. The ability of these complexes to transfer DNA into cells is dependent on the physicochemical attributes of the complexes, therefore characterization of binding-induced changes in liposomes is critical for the development of lipid-based DNA delivery systems. To clarify the apparent lack of correlation between membrane fusion and in vitro transfection previously observed, we performed a multi-step lipid mixing assay to model the sequential steps involved in transfection. The roles of anion charge density, charge ratio and presence of salt on lipid mixing and liposome aggregation were investigated. The resonance-energy transfer method was used to monitor lipid mixing as cationic liposomes (DODAC/DOPE and DODAC/DOPC; 1:1 mole ratio) were combined with plasmid, oligonucleotides or Na(2)HPO(4). Cryo-transmission electron microscopy was performed to assess morphology. As plasmid or oligonucleotide concentration increased, lipid mixing and aggregation increased, but with Na(2)HPO(4) only aggregation occurred. NaCl (150 mM) reduced the extent of lipid mixing. Transfection studies suggest that the presence of salt during complexation had minimal effects on in vitro transfection. These data give new information about the effects of polynucleotide binding to cationic liposomes, illustrating the complicated nature of anion induced changes in liposome morphology and membrane behavior.


Molecular Therapy | 2018

Targeted mRNA Therapy for Ornithine Transcarbamylase Deficiency

Mary G. Prieve; Pierrot Harvie; Sean Monahan; Debashish Roy; Allen Li; Teri Blevins; Amber Paschal; Matt Waldheim; Eric Bell; Anna Galperin; Jean-Rene Ella-Menye; Michael E. Houston

We describe a novel, two-nanoparticle mRNA delivery system and show that it is highly effective as a means of intracellular enzyme replacement therapy (i-ERT) using a murine model of ornithine transcarbamylase deficiency (OTCD). Our Hybrid mRNA Technology delivery system (HMT) comprises an inert lipid nanoparticle that protects the mRNA from nucleases in the blood as it distributes to the liver and a polymer micelle that targets hepatocytes and triggers endosomal release of mRNA. This results in high-level synthesis of the desired protein specifically in the liver. HMT delivery of human OTC mRNA normalizes plasma ammonia and urinary orotic acid levels, and leads to a prolonged survival benefit in the murine OTCD model. HMT represents a unique, non-viral mRNA delivery method that allows multi-dose, systemic administration for treatment of single-gene inherited metabolic diseases.


Methods in molecular medicine | 2000

15 Targeted Gene Transfer

Ellen K. Wasan; Dorothy L. Reimer; Pierrot Harvie; Spencer Kong; Frances M.P. Wong; Marcel B. Bally

The overall goal of gene therapy is to cure or stabilize a disease process that results from the production of a mutant protein (for example, the chloride channel protein important in cystic fibrosis) or overproduction of a normal protein (such as the products of certain oncogenes). We can achieve this goal by replacing the defective gene or by reducing the overexpression of the target gene using an antisense strategy, thus reducing the production of the diseasepromoting protein (1,2). For either method, it is critical to transfer DNA into target cells in a concentration high enough to be effective in modifying the disease. DNA must be delivered to the desired cell population in an intact state, whereby it can be efficiently transcribed and ultimately translated. The method of gene transfer must be highly efficient and nontoxic, and the delivery system must be relatively easy to prepare and administer (3). There is a great deal of optimism surrounding the development of gene therapy as an effective strategy for management of many different human diseases. The active agent used to procure gene therapy is likely to consist of oligonucleotides, ribozymes, or a DNA sequence that can be transcribed into a message capable of eliciting a therapeutic response. Unlike conventional small-molecule therapeutics however, gene therapy requires the use of a carrier system to deliver the active agent directly into the target cell population.


Molecular Therapy | 2016

170. PhaseRx mRNA Technology Platform Uses SMARTT Polymer Technology® to Target and Deliver mRNA to the Liver and Treat a Urea Cycle Disorder in a Mouse Disease Model

Mary G. Prieve; Allen Li; Alex Baturevych; Eric Bell; Teri Blevins; Anna Galperin; Pierrot Harvie; Jean-Rene Ella Menye; Sean Monahan; Amber Paschal; Maher Qabar; Debashish Roy; Matt Waldheim; Michael E. Houston

Messenger RNA (mRNA) is a promising alternative in both the viral and non-viral DNA-based gene delivery fields. Current viral vectors for gene therapy are associated with serious safety concerns and nonviral vectors are limited by low gene transfer efficiency. mRNA gene expression in the liver can be used for treatment of genetic diseases involving disorders of metabolism. The majority are due to defects of single genes that code for enzymes expressed solely or predominantly in the liver. SMARTT Polymer Technology® has been developed into a robust platform for RNA therapeutics. Optimization of the mRNA technology platform has led to stepwise improvements in mRNA delivery to the liver using GalNAc targeted polymers. We demonstrated a 5,000-fold improvement in activity over our first generation delivery system.Urea cycle disorders result from single gene mutations that lead to deficiency in one of the six enzymes in the urea cycle pathway. This deficiency can trigger elevated blood ammonia levels, also known as hyperammonemia, a life-threatening illness that leads to brain damage, coma or even death in humans. The deficient protein is intracellular and IV protein therapeutics are ineffective. Liver transplantation is the only cure for urea cycle disorders but is limited by the shortage of donors and complications associated with rejection and infection of the transplant. There is a dire need for new treatment options.Using the mRNA technology platform, we have demonstrated preclinical proof of concept in a urea cycle disorder mouse disease model. Treatment with therapeutic mRNA shows normalization of blood ammonia levels in hyperammonemic mice. Therapeutic mRNA expression is detected in the liver after a single mRNA dose with good duration of expression. The treatment was well tolerated, with no toxicities associated with both single and multiple dosing regimens.This mRNA technology platform provides a significant opportunity for the treatment of urea cycle disorders and other orphan liver diseases.

Collaboration


Dive into the Pierrot Harvie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary G. Prieve

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry Polisky

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Tardi

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar

Yan Chen

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Troy Harasym

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge