Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pieter A. Doevendans is active.

Publication


Featured researches published by Pieter A. Doevendans.


Journal of the American College of Cardiology | 2008

Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study.

W. Bob Meijboom; Matthijs F.L. Meijs; Joanne D. Schuijf; Maarten J. Cramer; Nico R. Mollet; Carlos Van Mieghem; Koen Nieman; Jacob M. van Werkhoven; Gabija Pundziute; Annick C. Weustink; Alexander M. de Vos; Francesca Pugliese; Benno J. Rensing; J. Wouter Jukema; Jeroen J. Bax; Mathias Prokop; Pieter A. Doevendans; Myriam Hunink; Gabriel P. Krestin; Pim J. de Feyter

OBJECTIVES This study sought to determine the diagnostic accuracy of 64-slice computed tomographic coronary angiography (CTCA) to detect or rule out significant coronary artery disease (CAD). BACKGROUND CTCA is emerging as a noninvasive technique to detect coronary atherosclerosis. METHODS We conducted a prospective, multicenter, multivendor study involving 360 symptomatic patients with acute and stable anginal syndromes who were between 50 and 70 years of age and were referred for diagnostic conventional coronary angiography (CCA) from September 2004 through June 2006. All patients underwent a nonenhanced calcium scan and a CTCA, which was compared with CCA. No patients or segments were excluded because of impaired image quality attributable to either coronary motion or calcifications. Patient-, vessel-, and segment-based sensitivities and specificities were calculated to detect or rule out significant CAD, defined as >or=50% lumen diameter reduction. RESULTS The prevalence among patients of having at least 1 significant stenosis was 68%. In a patient-based analysis, the sensitivity for detecting patients with significant CAD was 99% (95% confidence interval [CI]: 98% to 100%), specificity was 64% (95% CI: 55% to 73%), positive predictive value was 86% (95% CI: 82% to 90%), and negative predictive value was 97% (95% CI: 94% to 100%). In a segment-based analysis, the sensitivity was 88% (95% CI: 85% to 91%), specificity was 90% (95% CI: 89% to 92%), positive predictive value was 47% (95% CI: 44% to 51%), and negative predictive value was 99% (95% CI: 98% to 99%). CONCLUSIONS Among patients in whom a decision had already been made to obtain CCA, 64-slice CTCA was reliable for ruling out significant CAD in patients with stable and unstable anginal syndromes. A positive 64-slice CTCA scan often overestimates the severity of atherosclerotic obstructions and requires further testing to guide patient management.


Circulation | 2007

MicroRNAs in the human heart : A clue to fetal gene reprogramming in heart failure

Thomas Thum; Paolo Galuppo; Christian Wolf; Jan Fiedler; Susanne Kneitz; Linda W. van Laake; Pieter A. Doevendans; Jürgen Borlak; Axel Haverich; Carina Gross; Stefan Engelhardt; Georg Ertl; Johann Bauersachs

Background— Chronic heart failure is characterized by left ventricular remodeling and reactivation of a fetal gene program; the underlying mechanisms are only partly understood. Here we provide evidence that cardiac microRNAs, recently discovered key regulators of gene expression, contribute to the transcriptional changes observed in heart failure. Methods and Results— Cardiac transcriptome analyses revealed striking similarities between fetal and failing human heart tissue. Using microRNA arrays, we discovered profound alterations of microRNA expression in failing hearts. These changes closely mimicked the microRNA expression pattern observed in fetal cardiac tissue. Bioinformatic analysis demonstrated a striking concordance between regulated messenger RNA expression in heart failure and the presence of microRNA binding sites in the respective 3 untranslated regions. Messenger RNAs upregulated in the failing heart contained preferentially binding sites for downregulated microRNAs and vice versa. Mechanistically, transfection of cardiomyocytes with a set of fetal microRNAs induced cellular hypertrophy as well as changes in gene expression comparable to the failing heart. Conclusions— Our data support a novel mode of regulation for the transcriptional changes in cardiac failure. Reactivation of a fetal microRNA program substantially contributes to alterations of gene expression in the failing human heart.


The Lancet | 2000

Visualisation of cell death in vivo in patients with acute myocardial infarction

Leo Hofstra; Ing Han Liem; Ewald A. W. J. Dumont; Hendricus H Boersma; Waander L. van Heerde; Pieter A. Doevendans; Ebo DeMuinck; Hein J. J. Wellens; Gerrit J. Kemerink; Chris Reutelingsperger; Guido A. K. Heidendal

BACKGROUND In-vivo visualisation and quantification of the extent and time-frame of cell death after acute myocardial infarction would be of great interest. We studied in-vivo cell death in the hearts of patients with an acute myocardial infarction using imaging with technetium-99m-labelled annexin-V-a protein that binds to cells undergoing apoptosis. METHODS Seven patients with an acute myocardial infarction and one control were studied. All patients were treated by percutaneous transluminal coronary angioplasty (six primary and one rescue), resulting in thrombolysis in myocardial infarction (TIMI) III flow of the infarct-related artery. 2 h after reperfusion, 1 mg annexin-V labelled with 584 MBq Tc-99m was injected intravenously. Early (mean 3.4 h) and late (mean 20.5 h) single-photon-emission computed tomographic (SPECT) images of the heart were obtained. Routine myocardial resting-perfusion imaging was also done to verify infarct localisation. FINDINGS In six of the seven patients, increased uptake of Tc-99m-labelled annexin-V was seen in the infarct area of the heart on early and late SPECT images. No increased uptake was seen in the heart outside the infarct area. All patients with increased Tc-99m-labelled annexin-V uptake in the infarct area showed a matching perfusion defect. In a control individual, no increased uptake in the heart was seen. INTERPRETATION Increased uptake of Tc-99m-labelled annexin-V is present in the infarct area of patients with an acute myocardial infarction, suggesting that programmed cell death occurs in that area. The annexin-V imaging protocol might allow us to study the dynamics of reperfusion-induced cell death in the area at risk and may help to assess interventions that inhibit cell death in patients with an acute myocardial infarction.


Journal of the American College of Cardiology | 2009

Exenatide Reduces Infarct Size and Improves Cardiac Function in a Porcine Model of Ischemia and Reperfusion Injury

Leo Timmers; José P.S. Henriques; Dominique P.V. de Kleijn; J. Hans DeVries; Hans Kemperman; Paul Steendijk; Cees W.J. Verlaan; Marjolein Kerver; Jan J. Piek; Pieter A. Doevendans; Gerard Pasterkamp; Imo E. Hoefer

OBJECTIVES This study sought to examine whether exenatide is capable of reducing myocardial infarct size. BACKGROUND Exenatide is a glucagon-like peptide (GLP)-1 analogue with insulinotropic and insulinomimetic properties. Because insulin and GLP-1 have been described as reducing apoptosis, exenatide might confer cardioprotection after acute myocardial infarction (MI). METHODS Pigs were randomized to exenatide or phosphate-buffered saline (PBS) treatment after 75 min of coronary artery ligation and subsequent reperfusion. Infarct size was assessed with Evans Blue (Sigma-Aldrich, St. Louis, Missouri) and triphenyltetrazolium chloride. Cardiac function was measured with epicardial ultrasound and conductance catheter-based pressure-volume loops. Western blotting, histology, and activity assays were performed to determine markers of apoptosis/survival and oxidative stress. RESULTS Exenatide reduced myocardial infarct size (32.7 +/- 6.4% vs. 53.6 +/- 3.9%; p = 0.031) and prevented deterioration of systolic and diastolic cardiac function (systolic wall thickening: 47.3 +/- 6.3% vs. 8.1 +/- 1.9%, p < 0.001; myocardial stiffness: 0.12 +/- 0.06 mm Hg/ml vs. 0.22 +/- 0.07 mm Hg/ml; p = 0.004). After exenatide treatment, myocardial phosphorylated Akt and Bcl-2 expression levels were higher compared with those after PBS treatment, and active caspase 3 expression was lower. In addition, fewer cells were terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling-positive. In addition, nuclear oxidative stress as assessed with an 8-hydroxydeoxyguanosine staining was reduced in the exenatide treatment arm, and superoxide dismutase activity and catalase activity were increased. Serum insulin levels increased after exenatide treatment, without affecting glucose levels. CONCLUSIONS These data identify exenatide as a potentially effective compound to reduce infarct size in adjunction to reperfusion therapy in patients with acute MI.


Stem Cell Research | 2013

Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury.

Fatih Arslan; Ruenn Chai Lai; Mirjam B. Smeets; Lars Akeroyd; Eissa N. E. Aguor; Leo Timmers; Harold V.M. van Rijen; Pieter A. Doevendans; Gerard Pasterkamp; Sai Kiang Lim; Dominique P.V. de Kleijn

We have previously identified exosomes as the paracrine factor secreted by mesenchymal stem cells. Recently, we found that the key features of reperfusion injury, namely loss of ATP/NADH, increased oxidative stress and cell death were underpinned by proteomic deficiencies in ischemic/reperfused myocardium, and could be ameliorated by proteins in exosomes. To test this hypothesis in vivo, mice (C57Bl6/J) underwent 30 min ischemia, followed by reperfusion (I/R injury). Purified exosomes or saline was administered 5 min before reperfusion. Exosomes reduced infarct size by 45% compared to saline treatment. Langendorff experiments revealed that intact but not lysed exosomes enhanced viability of the ischemic/reperfused myocardium. Exosome treated animals exhibited significant preservation of left ventricular geometry and contractile performance during 28 days follow-up. Within an hour after reperfusion, exosome treatment increased levels of ATP and NADH, decreased oxidative stress, increased phosphorylated-Akt and phosphorylated-GSK-3β, and reduced phosphorylated-c-JNK in ischemic/reperfused hearts. Subsequently, both local and systemic inflammation were significantly reduced 24h after reperfusion. In conclusion, our study shows that intact exosomes restore bioenergetics, reduce oxidative stress and activate pro-survival signaling, thereby enhancing cardiac function and geometry after myocardial I/R injury. Hence, mesenchymal stem cell-derived exosomes are a potential adjuvant to reperfusion therapy for myocardial infarction.


Stem Cell Research | 2007

Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction

Linda W. van Laake; Robert Passier; Jantine Monshouwer-Kloots; Arie J. Verkleij; Daniel J. Lips; Christian Freund; Krista den Ouden; Dorien Ward-van Oostwaard; Jeroen Korving; Leon G.J. Tertoolen; Cees J. A. van Echteld; Pieter A. Doevendans

Regeneration of the myocardium by transplantation of cardiomyocytes is an emerging therapeutic strategy. Human embryonic stem cells (HESC) form cardiomyocytes readily but until recently at low efficiency, so that preclinical studies on transplantation in animals are only just beginning. Here, we show the results of the first long-term (12 weeks) analysis of the fate of HESC-derived cardiomyocytes transplanted intramyocardially into healthy, immunocompromised (NOD-SCID) mice and in NOD-SCID mice that had undergone myocardial infarction (MI). Transplantation of mixed populations of differentiated HESC containing 20-25% cardiomyocytes in control mice resulted in rapid formation of grafts in which the cardiomyocytes became organized and matured over time and the noncardiomyocyte population was lost. Grafts also formed in mice that had undergone MI. Four weeks after transplantation and MI, this resulted in significant improvement in cardiac function measured by magnetic resonance imaging. However, at 12 weeks, this was not sustained despite graft survival. This suggested that graft size was still limiting despite maturation and organization of the transplanted cells. More generally, the results argued for requiring a minimum of 3 months follow-up in studies claiming to observe improved cardiac function, independent of whether HESC or other (adult) cell types are used for transplantation.


Journal of Anatomy | 2002

Cardiomyocyte differentiation of mouse and human embryonic stem cells

Dorien Ward; C. E. van den Brink; S. D. Bird; Pieter A. Doevendans; Tobias Opthof; A. Brutel de la Riviere; Leon G.J. Tertoolen; M. van der Heyden; Martin F. Pera

Ischaemic heart disease is the leading cause of morbidity and mortality in the western world. Cardiac ischaemia caused by oxygen deprivation and subsequent oxygen reperfusion initiates irreversible cell damage, eventually leading to widespread cell death and loss of function. Strategies to regenerate damaged cardiac tissue by cardiomyocyte transplantation may prevent or limit post‐infarction cardiac failure. We are searching for methods for inducing pluripotent stem cells to differentiate into transplantable cardiomyocytes. We have already shown that an endoderm‐like cell line induced the differentiation of embryonal carcinoma cells into immature cardiomyoctyes. Preliminary results show that human and mouse embryonic stem cells respond in a similar manner. This study presents initial characterization of these cardiomyocytes and the mouse myocardial infarction model in which we will test their ability to restore cardiac function.


Circulation | 2006

Plakophilin-2 Mutations Are the Major Determinant of Familial Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy

J. Peter van Tintelen; Mark M. Entius; Zahurul A. Bhuiyan; Roselie Jongbloed; Ans C.P. Wiesfeld; Arthur A.M. Wilde; Jasper J. van der Smagt; Ludolf G. Boven; Marcel Mannens; Irene M. van Langen; Robert M. W. Hofstra; Luuk Otterspoor; Pieter A. Doevendans; Luz-Maria Rodriguez; Isabelle C. Van Gelder; Richard N.W. Hauer

Background— Mutations in the plakophilin-2 gene (PKP2) have been found in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC). Hence, genetic screening can potentially be a valuable tool in the diagnostic workup of patients with ARVC. Methods and Results— To establish the prevalence and character of PKP2 mutations and to study potential differences in the associated phenotype, we evaluated 96 index patients, including 56 who fulfilled the published task force criteria. In addition, 114 family members from 34 of these 56 ARVC index patients were phenotyped. In 24 of these 56 ARVC patients (43%), 14 different (11 novel) PKP2 mutations were identified. Four different mutations were found more than once; haplotype analyses revealed identical haplotypes in the different mutation carriers, suggesting founder mutations. No specific genotype–phenotype correlations could be identified, except that negative T waves in V2 and V3 occurred more often in PKP2 mutation carriers (P<0.05). Of the 34 index patients whose family members were phenotyped, 23 familial cases were identified. PKP2 mutations were identified in 16 of these 23 ARVC index patients (70%) with familial ARVC. On the other hand, no PKP2 mutations at all were found in 11 probands without additional affected family members (P<0.001). Conclusions— PKP2 mutations can be identified in nearly half of the Dutch patients fulfilling the ARVC criteria. In familial ARVC, even the vast majority (70%) is caused by PKP2 mutations. However, nonfamilial ARVC is not related to PKP2. The high yield of mutational analysis in familial ARVC is unique in inherited cardiomyopathies.


Journal of the American College of Cardiology | 1999

Auditory stimuli as a trigger for arrhythmic events differentiate HERG-related (LQTS2) patients from KVLQT1-related patients (LQTS1)

Arthur A.M. Wilde; Rosalie J. E Jongbloed; Pieter A. Doevendans; Donald R. Düren; Richard N.W. Hauer; Irene M. van Langen; J. Peter van Tintelen; H.J.M. Smeets; Henk Meyer; Jan L.M.C. Geelen

OBJECTIVE This study was performed to identify a possible relationship between genotype and phenotype in the congenital familial long QT syndrome (cLQTS). BACKGROUND The cLQTS, which occurs as an autosomal dominant or recessive trait, is characterized by QT-interval prolongation on the electrocardiogram and torsade de pointes arrhythmias, which may give rise to recurrent syncope or sudden cardiac death. Precipitators for cardiac events are exercise or emotion and occasionally acoustic stimuli. METHODS The trigger for cardiac events (syncope, documented cardiac arrhythmias, sudden cardiac death) was analyzed in 11 families with a familial LQTS and a determined genotype. RESULTS The families were subdivided in KVLQT1-related families (LQTS1, n = 5) and HERG (human ether-a-gogo-related gene)-related families (LQTS2, n = 6) based on single-strand conformation polymorphism analysis and sequencing. Whereas exercise-related cardiac events dominate the clinical picture of LQTS1 patients, auditory stimuli as a trigger for arrhythmic events were only seen in LQTS2 patients. CONCLUSIONS Arrhythmic events triggered by auditory stimuli may differentiate LQTS2 from LQTS1 patients.


Cardiovascular Ultrasound | 2007

Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image acquisition and analysis using tissue Doppler and speckle tracking

Arco J. Teske; Bart W.L. De Boeck; Paul G. Melman; Gertjan T. Sieswerda; Pieter A. Doevendans; Maarten Jm Cramer

Recent developments in the field of echocardiography have allowed the cardiologist to objectively quantify regional and global myocardial function. Regional deformation (strain) and deformation rate (strain-rate) can be calculated non-invasively in both the left and right ventricle, providing information on regional (dys-)function in a variety of clinical settings. Although this promising novel technique is increasingly applied in clinical and preclinical research, knowledge about the principles, limitations and technical issues of this technique is mandatory for reliable results and for implementation both in the clinical as well as the scientific field.In this article, we aim to explain the fundamental concepts and potential clinical applicability of strain and strain-rate for both tissue Doppler imaging (TDI) derived and speckle tracking (2D-strain) derived deformation imaging. In addition, a step-by-step approach to image acquisition and post processing is proposed. Finally, clinical examples of deformation imaging in hypertrophic cardiomyopathy (HCM), cardiac resynchronization therapy (CRT) and arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) are presented.

Collaboration


Dive into the Pieter A. Doevendans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie-José Goumans

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge