Pieter H. Anborgh
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pieter H. Anborgh.
Journal of Biological Chemistry | 1999
Jie Zhang; Larry S. Barak; Pieter H. Anborgh; Stéphane A. Laporte; Marc G. Caron; Stephen S. G. Ferguson
β-Arrestins are multifunctional proteins identified on the basis of their ability to bind and uncouple G protein-coupled receptors (GPCR) from heterotrimeric G proteins. In addition, β-arrestins play a central role in mediating GPCR endocytosis, a key regulatory step in receptor resensitization. In this study, we visualize the intracellular trafficking of β-arrestin2 in response to activation of several distinct GPCRs including the β2-adrenergic receptor (β2AR), angiotensin II type 1A receptor (AT1AR), dopamine D1A receptor (D1AR), endothelin type A receptor (ETAR), and neurotensin receptor (NTR). Our results reveal that in response to β2AR activation, β-arrestin2 translocation to the plasma membrane shares the same pharmacological profile as described for receptor activation and sequestration, consistent with a role for β-arrestin as the agonist-driven switch initiating receptor endocytosis. Whereas redistributed β-arrestins are confined to the periphery of cells and do not traffic along with activated β2AR, D1AR, and ETAR in endocytic vesicles, activation of AT1AR and NTR triggers a clear time-dependent redistribution of β-arrestins to intracellular vesicular compartments where they colocalize with internalized receptors. Activation of a chimeric AT1AR with the β2AR carboxyl-terminal tail results in a β-arrestin membrane localization pattern similar to that observed in response to β2AR activation. In contrast, the corresponding chimeric β2AR with the AT1AR carboxyl-terminal tail gains the ability to translocate β-arrestin to intracellular vesicles. These results demonstrate that the cellular trafficking of β-arrestin proteins is differentially regulated by the activation of distinct GPCRs. Furthermore, they suggest that the carboxyl-tail of the receptors might be involved in determining the stability of receptor/βarrestin complexes and cellular distribution of β-arrestins.
Nature Cell Biology | 2002
Moshmi Bhattacharya; Pieter H. Anborgh; Andy V. Babwah; Lianne B. Dale; Tomas Dobransky; Jeffery L. Benovic; Ross D. Feldman; Joseph M. Verdi; R. Jane Rylett; Stephen S. G. Ferguson
β-Arrestins are important in chemoattractant receptor-induced granule release, a process that may involve Ral-dependent regulation of the actin cytoskeleton. We have identified the Ral GDP dissociation stimulator (Ral-GDS) as a β-arrestin-binding protein by yeast two-hybrid screening and co-immunoprecipitation from human polymorphonuclear neutrophilic leukocytes (PMNs). Under basal conditions, Ral-GDS is localized to the cytosol and remains inactive in a complex formed with β-arrestins. In response to formyl-Met-Leu-Phe (fMLP) receptor stimulation, β-arrestin–Ral-GDS protein complexes dissociate and Ral-GDS translocates with β-arrestin from the cytosol to the plasma membrane, resulting in the Ras-independent activation of the Ral effector pathway required for cytoskeletal rearrangement. The subsequent re-association of β-arrestin–Ral-GDS complexes is associated with the inactivation of Ral signalling. Thus, β-arrestins regulate multiple steps in the Ral-dependent processes that result in chemoattractant-induced cytoskeletal reorganization.
Journal of Cellular and Molecular Medicine | 2010
Pieter H. Anborgh; Jennifer C. Mutrie; Alan B. Tuck; Ann F. Chambers
Osteopontin (OPN) is a secreted protein present in bodily fluids and tissues. It is subject to multiple post‐translational modifications, including phosphorylation, glycosylation, proteolytic cleavage and crosslinking by transglutamination. Binding of OPN to integrin and CD44 receptors regulates signalling cascades that affect processes such as adhesion, migration, invasion, chemotaxis and cell survival. A variety of cells and tissues express OPN, including bone, vasculature, kidney, inflammatory cells and numerous secretory epithelia. Normal physiological roles include regulation of immune functions, vascular remodelling, wound repair and developmental processes. OPN also is expressed in many cancers, and elevated levels in patients’ tumour tissue and blood are associated with poor prognosis. Tumour growth is regulated by interactions between tumour cells and their tissue microenvironment. Within a tumour mass, OPN can be expressed by both tumour cells and cellular components of the tumour microenvironment, and both tumour and normal cells may have receptors able to bind to OPN. OPN can also be found as a component of the extracellular matrix. The functional roles of OPN in a tumour are thus complex, with OPN secreted by both tumour cells and cells in the tumour microenvironment, both of which can in turn respond to OPN. Much remains to be learned about the cross‐talk between normal and tumour cells within a tumour, and the role of multiple forms of OPN in these interactions. Understanding OPN‐mediated interactions within a tumour will be important for the development of therapeutic strategies to target OPN.
The Journal of Neuroscience | 2004
Moshmi Bhattacharya; Andy V. Babwah; Christina M. Godin; Pieter H. Anborgh; Lianne B. Dale; Michael O. Poulter; Stephen S. G. Ferguson
G-protein-coupled receptors play a central role in the regulation of neuronal cell communication. Class 1 metabotropic glutamate receptors (mGluRs) mGluR1a and mGluR5a, which are coupled with the hydrolysis of phosphoinositides, are essential for modulating excitatory neurotransmission at glutamatergic synapses. These receptors are constitutively internalized in heterologous cell cultures, neuronal cultures, and intact neuronal tissues. We show here that the small GTP-binding protein Ral, its guanine nucleotide exchange factor RalGDS (Ral GDP dissociation stimulator), and phospholipase D2 (PLD2) are constitutively associated with class 1 mGluRs and regulate constitutive mGluR endocytosis. Moreover, both Ral and PLD2 are colocalized with mGluRs in endocytic vesicles in both human embryonic kidney 293 (HEK 293) cells and neurons. Ral and PLD2 activity is required for the internalization of class 1 mGluRs but is not required for the internalization of the β2-adrenergic receptor. Constitutive class 1 mGluR internalization is not dependent on the downstream Ral effector proteins Ral-binding protein 1 and PLD1 or either ADP-ribosylation factors ARF1 or ARF6. The treatment of HEK 293 cells and neurons with small interfering RNA both downregulates PLD2 expression and blocks mGluR1a and mGluR5a endocytosis. The constitutive internalization of mGluR1a and mGluR5a is also attenuated by the treatment of cells with 1-butanol to prevent PLD2-mediated phosphatidic acid formation. We propose that the formation of a mGluR-scaffolded RalGDS/Ral/PLD2 protein complex provides a novel alternative mechanism to β-arrestins for the constitutive endocytosis of class 1 mGluRs.
Journal of Cell Communication and Signaling | 2011
Pieter H. Anborgh; Jennifer C. Mutrie; Alan B. Tuck; Ann F. Chambers
Osteopontin (OPN) is a matricellular protein that binds to a number of cell surface receptors including integrins and CD44. It is expressed in many tissues and secreted into body fluids including blood, milk and urine. OPN plays important physiological roles in bone remodeling, immune response and inflammation. It is also a tumour-associated protein, and elevated OPN levels are associated with tumour formation, progression and metastasis. Research has revealed a promising role for OPN as a cancer biomarker. OPN is subject to alternative splicing, as well as post-translational modifications such as phosphorylation, glycosylation and proteolytic cleavage. Functional differences have been revealed for different isoforms and post-translational modifications. The pattern of isoform expression and post-translational modification is cell-type specific and may influence the potential role of OPN in malignancy and as a cancer biomarker.
Molecular Brain | 2010
Angela Lorenzen; Jonathan Samosh; Kenneth Vandewark; Pieter H. Anborgh; Claudia Seah; Ana C. Magalhaes; Sean P. Cregan; Stephen S. G. Ferguson; Stephen H. Pasternak
BackgroundA central feature of Alzheimers disease is the cleavage of the amyloid precursor protein (APP) to form beta-amyloid peptide (Aβ) by the β-secretase and γ-secretase enzymes. Although this has been shown to occur after endocytosis of APP from the cell surface, the exact compartments of APP processing are not well defined. We have previously demonstrated that APP and γ-secretase proteins and activity are highly enriched in purified rat liver lysosomes. In order to examine the lysosomal distribution and trafficking of APP in cultured cells, we generated constructs containing APP fused to a C-terminal fluorescent protein tag and N-terminal HA-epitope tag. These were co-transfected with a panel of fluorescent-protein tagged compartment markers.ResultsHere we demonstrate using laser-scanning confocal microscopy that although APP is present throughout the endosomal/lysosomal system in transfected Cos7 and neuronal SN56 cell lines as well as in immunostained cultured mouse neurons, it is enriched in the lysosome. We also show that the Swedish and London mutations reduce the amount of APP in the lysosome. Surprisingly, in addition to its expected trafficking from the cell surface to the early and then late endosomes, we find that cell-surface labelled APP is transported rapidly and directly from the cell surface to lysosomes in both Cos7 and SN56 cells. This rapid transit to the lysosome is blocked by the presence of either the London or Swedish mutations.ConclusionsThese results demonstrate the presence of a novel, rapid and specific transport pathway from the cell surface to the lysosomes. This suggests that regulation of lysosomal traffic could regulate APP processing and that the lysosome could play a central role in the pathophysiology of Alzheimers disease.
Clinical Chemistry | 2009
Pieter H. Anborgh; Sylvia M. Wilson; Alan B. Tuck; Eric Winquist; Nancy Schmidt; Russell Hart; Shigeyuki Kon; Masahiro Maeda; Toshimitsu Uede; Larry Stitt; Ann F. Chambers
BACKGROUND A previously developed monoclonal/polyclonal ELISA (Mono/Poly) to detect plasma concentrations of osteopontin (OPN) was shown to provide prognostic information in breast, prostate, and other cancers. Here we describe the clinical validation of a new dual monoclonal (Dual Mono) assay. We compared both assays with 4 assays that recognize defined regions of OPN protein (dual polyclonal systems 5-1, 4-1, 4-3 and polyclonal-monoclonal system 1-3). METHODS OPN sequences recognized by the monoclonal antibodies that make up the Dual Mono ELISA were identified by Pepscan CLIPS analysis. Using the 6 ELISAs, we measured OPN in plasma from 66 patients with castration-resistant prostate cancer, and we assessed the ability of each assay to predict patient survival. RESULTS The assays varied in measured plasma OPN concentrations, with median values ranging from 112 to 1740 mug/L, and ability to predict patient survival. By Cox univariable regression of survival by tertiles of OPN, the Mono/Poly and Dual Mono ELISAs had the highest log-rank chi(2) values. After adjustment for risk factors independently associated with survival in our samples, OPN remained associated with survival only for the Mono/Poly and Dual Mono systems. CONCLUSIONS OPN plasma values varied significantly depending on the assay used. Only the Mono/Poly and Dual Mono systems were independently associated with survival in a population of men with castration-resistant prostate cancer. The availability of a clinically validated, dual monoclonal-based ELISA will provide consistent reagents for studies of OPN plasma concentrations in cancer and other pathologies.
Expert Opinion on Therapeutic Targets | 2018
Pieter H. Anborgh; Danny J. Lee; Pieter F. Stam; Alan B. Tuck; Ann F. Chambers
ABSTRACT Objective: Effective targeted therapies for patients with triple-negative breast cancer (TNBC) present an unmet clinical need. There is evidence that TNBCs often have increased expression of the epidermal growth factor receptor (EGFR) and of osteopontin (OPN). OPN-mediated signaling can activate EGFR-dependent signaling pathways. Here, we assessed OPN as a potential predictive biomarker for response to anti-EGFR therapy in TNBC. Research design and methods: Using two different TNBC cell lines, MDA-MB-468 and MDA-MB-231, we investigated the impact of stable expression of OPN on efficacy of the EGFR inhibitor erlotinib in vitro. Results: We observed that breast cancer cells engineered to overexpress OPN are more sensitive to growth inhibition by erlotinib than control cells. The level of response was related to the level of OPN expression, possibly due to increased phosphorylation status of EGFR Tyr1068. Conclusions: These results indicate that OPN expression levels are related to sensitivity of TNBC cells to growth inhibition by erlotinib. OPN thus is a promising predictive biomarker for anti-EGFR therapy in breast cancer.
Journal of Biological Chemistry | 2000
Jennifer L. Seachrist; Pieter H. Anborgh; Stephen S. G. Ferguson
Journal of Biological Chemistry | 2005
Pieter H. Anborgh; Christina M. Godin; Macarena Pampillo; Gurpreet K. Dhami; Lianne B. Dale; Sean P. Cregan; Ray Truant; Stephen S. G. Ferguson