Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pieter M.M. De Kesel is active.

Publication


Featured researches published by Pieter M.M. De Kesel.


Critical Reviews in Toxicology | 2012

Dried blood spots in toxicology: from the cradle to the grave?

Christophe P. Stove; Ann-Sofie Ingels; Pieter M.M. De Kesel; Willy E. Lambert

About a century after its first described application by Ivar Bang, the potential of sampling via dried blood spots (DBS) as an alternative for classical venous blood sampling is increasingly recognized. Perhaps best known is the use of DBS in newborn screening programs, ignited by the hallmark paper by Guthrie and Susi half a century ago. However, it is only recently that both academia and industry have recognized the many advantages that DBS sampling may offer for bioanalytical purposes, as reflected by the strong increase in published reports during the last few years. Currently, major DBS applications include newborn screening for metabolic disorders, epidemiological surveys (e.g. HIV monitoring), therapeutic drug monitoring (TDM), as well as toxicology. In this review, we provide a comprehensive overview of the distinct subdisciplines of toxicology for which DBS sampling has been applied. DBS sampling for toxicological evaluation has been performed from birth until autopsy, aiming at the assessment of therapeutic drugs, drugs of abuse, environmental contaminants, toxins, as well as (trace) elements, with applications situated in fields as toxicokinetics, epidemiology and environmental and forensic toxicology. We discuss the strengths and limitations of DBS in the different subdisciplines and provide future prospects for the use of this promising sampling technique in toxicology.


Analytica Chimica Acta | 2015

Does volumetric absorptive microsampling eliminate the hematocrit bias for caffeine and paraxanthine in dried blood samples?: a comparative study

Pieter M.M. De Kesel; Willy E. Lambert; Christophe P. Stove

Volumetric absorptive microsampling (VAMS) is a novel sampling technique that allows the straightforward collection of an accurate volume of blood (approximately 10μL) from a drop or pool of blood by dipping an absorbent polymeric tip into it. The resulting blood microsample is dried and analyzed as a whole. The aim of this study was to evaluate the potential of VAMS to overcome the hematocrit bias, an important issue in the analysis of dried blood microsamples. An LC-MS/MS method for analysis of the model compounds caffeine and paraxanthine in VAMS samples was fully validated and fulfilled all pre-established criteria. In conjunction with previously validated procedures for dried blood spots (DBS) and blood, this allowed us to set up a meticulous comparative study in which both compounds were determined in over 80 corresponding VAMS, DBS and liquid whole blood samples. These originated from authentic human patient samples, covering a wide hematocrit range (0.21-0.50). By calculating the differences with reference whole blood concentrations, we found that analyte concentrations in VAMS samples were not affected by a bias that changed over the evaluated hematocrit range, in contrast to DBS results. However, VAMS concentrations tend to overestimate whole blood concentrations, as a consistent positive bias was observed. A different behavior of VAMS samples prepared from incurred and spiked blood, combined with a somewhat reduced recovery of caffeine and paraxanthine from VAMS tips at high hematocrit values, an effect that was not observed for DBS using a very similar extraction procedure, was found to be at the basis of the observed VAMS-whole blood deviations. Based on this study, being the first in which the validity and robustness of VAMS is evaluated by analyzing incurred human samples, it can be concluded that VAMS effectively assists in eliminating the effect of hematocrit.


Bioanalysis | 2014

Current strategies for coping with the hematocrit problem in dried blood spot analysis

Pieter M.M. De Kesel; Sara Capiau; Willy E. Lambert; Christophe P. Stove

The hematocrit (Hct) problem is the most widely discussed issue in dried blood spot (DBS) analysis. As Hct determines the vis-cosity of blood, it affects the spreading of blood spotted on filter paper. Therefore, par -tial punches taken from DBS prepared from blood with different Hct values will contain different amounts of blood. Hence, depend-ing on the analyte of interest and the filter paper used, deviating Hct values may cause significant assay bias. Hct may additionally influence the potential bias introduced by the site of punching, the recovery of a par-ticular compound from DBS and/or have an impact on matrix effects. As a consequence, the Hct effect is generally recognized as the most important factor hampering the wide-spread application of DBS


Bioanalysis | 2014

Spot them in the spot: analysis of abused substances using dried blood spots

Nele Sadones; Sara Capiau; Pieter M.M. De Kesel; Willy E. Lambert; Christophe P. Stove

Dried blood spot (DBS) sampling and DBS analysis have increasingly received attention during recent years. Furthermore, a substantial number of DBS methods has recently become available in clinical, forensic and occupational toxicology. In this review, we provide an overview of the different DBS-based methods that have been developed for detecting (markers of) abused substances. These include both legal and illegal drugs belonging to different categories, including cannabinoids, cocaine and metabolites, opioids, benzodiazepines and Z-drugs, amphetamines and analogs, gamma-hydroxybutyric acid, ketamine and novel psychoactive substances such as cathinones. Markers of ethanol consumption and tobacco use are also covered in this review. Since the majority of published methods has shown promising results overall, an interesting role for DBS analysis in diverse toxicological applications can be envisaged. For the distinct applications, we discuss the specific potential and benefits of DBS, the associated limitations and challenges, as well as recent developments and future perspectives.


Talanta | 2015

An optimized and validated SPE-LC–MS/MS method for the determination of caffeine and paraxanthine in hair

Pieter M.M. De Kesel; Willy E. Lambert; Christophe P. Stove

Caffeine is the probe drug of choice to assess the phenotype of the drug metabolizing enzyme CYP1A2. Typically, molar concentration ratios of paraxanthine, caffeines major metabolite, to its precursor are determined in plasma following administration of a caffeine test dose. The aim of this study was to develop and validate an LC-MS/MS method for the determination of caffeine and paraxanthine in hair. The different steps of a hair extraction procedure were thoroughly optimized. Following a three-step decontamination procedure, caffeine and paraxanthine were extracted from 20 mg of ground hair using a solution of protease type VIII in Tris buffer (pH 7.5). Resulting hair extracts were cleaned up on Strata-X™ SPE cartridges. All samples were analyzed on a Waters Acquity UPLC® system coupled to an AB SCIEX API 4000™ triple quadrupole mass spectrometer. The final method was fully validated based on international guidelines. Linear calibration lines for caffeine and paraxanthine ranged from 20 to 500 pg/mg. Precision (%RSD) and accuracy (%bias) were below 12% and 7%, respectively. The isotopically labeled internal standards compensated for the ion suppression observed for both compounds. Relative matrix effects were below 15%RSD. The recovery of the sample preparation procedure was high (>85%) and reproducible. Caffeine and paraxanthine were stable in hair for at least 644 days. The effect of the hair decontamination procedure was evaluated as well. Finally, the applicability of the developed procedure was demonstrated by determining caffeine and paraxanthine concentrations in hair samples of ten healthy volunteers. The optimized and validated method for determination of caffeine and paraxanthine in hair proved to be reliable and may serve to evaluate the potential of hair analysis for CYP1A2 phenotyping.


Bioanalysis | 2014

CYP1A2 phenotyping in dried blood spots and microvolumes of whole blood and plasma

Pieter M.M. De Kesel; Willy E. Lambert; Christophe P. Stove

BACKGROUND Phenotyping, using caffeine as probe substrate, is a proper method to assess CYP1A2 activity. We evaluated the utility of dried blood spots (DBS) for CYP1A2 phenotyping. RESULTS LC-MS/MS methods were developed and validated for quantitation of caffeine and its metabolite paraxanthine in DBS, whole blood and plasma. All parameters met the pre-established criteria. While recovery, matrix effects and precision were unaffected by hematocrit (Hct), there was a Hct effect on accuracy, although for the evaluated Hct interval (0.36-0.50) it remained within acceptable limits. The phenotyping methods were successfully applied in healthy volunteers. CONCLUSION Excellent method performance and highly comparable phenotyping indices in DBS, whole blood and plasma, combined with the benefits of DBS sampling, illustrate the suitability of DBS-based CYP1A2 phenotyping.


Clinical Pharmacokinectics | 2016

Alternative Sampling Strategies for Cytochrome P450 Phenotyping.

Pieter M.M. De Kesel; Willy E. Lambert; Christophe P. Stove

Interindividual variability in the expression and function of drug metabolizing cytochrome P (CYP) 450 enzymes, determined by a combination of genetic, non-genetic and environmental parameters, is a major source of variable drug response. Phenotyping by administration of a selective enzyme substrate, followed by the determination of a specific phenotyping metric, is an appropriate approach to assess the in vivo activity of CYP450 enzymes as it takes into account all influencing factors. A phenotyping protocol should be as simple and convenient as possible. Typically, phenotyping metrics are determined in traditional matrices, such as blood, plasma or urine. Several sampling strategies have been proposed as an alternative for these traditional sampling techniques. In this review, we provide a comprehensive overview of available methods using dried blood spots (DBS), hair, oral fluid, exhaled breath and sweat for in vivo CYP450 phenotyping. We discuss the relation between phenotyping metrics measured in these samples and those in conventional matrices, along with the advantages and limitations of the alternative sampling techniques. Reliable phenotyping procedures for several clinically relevant CYP450 enzymes, including CYP1A2, CYP2C19 and CYP2D6, are currently available for oral fluid, breath or DBS, while additional studies are needed for other CYP450 isoforms, such as CYP3A4. The role of hair analysis for this purpose remains to be established. Being non- or minimally invasive, these sampling strategies provide convenient and patient-friendly alternatives for classical phenotyping procedures, which may contribute to the implementation of CYP450 phenotyping in clinical practice.


Analytical Chemistry | 2017

Correction For the Hematocrit Bias in Dried Blood Spot Analysis Using a Non-destructive, Single-wavelength Reflectance-based Hematocrit Prediction Method.

Sara Capiau; Leah S. Wilk; Pieter M.M. De Kesel; Maurice C. G. Aalders; Christophe P. Stove

The hematocrit (Hct) effect is one of the most important hurdles currently preventing more widespread implementation of quantitative dried blood spot (DBS) analysis in a routine context. Indeed, the Hct may affect both the accuracy of DBS methods as well as the interpretation of DBS-based results. We previously developed a method to determine the Hct of a DBS based on its hemoglobin content using noncontact diffuse reflectance spectroscopy. Despite the ease with which the analysis can be performed (i.e., mere scanning of the DBS) and the good results that were obtained, the method did require a complicated algorithm to derive the total hemoglobin content from the DBSs reflectance spectrum. As the total hemoglobin was calculated as the sum of oxyhemoglobin, methemoglobin, and hemichrome, the three main hemoglobin derivatives formed in DBS upon aging, the reflectance spectrum needed to be unmixed to determine the quantity of each of these derivatives. We now simplified the method by only using the reflectance at a single wavelength, located at a quasi-isosbestic point in the reflectance curve. At this wavelength, assuming 1-to-1 stoichiometry of the aging reaction, the reflectance is insensitive to the hemoglobin degradation and only scales with the total amount of hemoglobin and, hence, the Hct. This simplified method was successfully validated. At each quality control level as well as at the limits of quantitation (i.e., 0.20 and 0.67) bias, intra- and interday imprecision were within 10%. Method reproducibility was excellent based on incurred sample reanalysis and surpassed the reproducibility of the original method. Furthermore, the influence of the volume spotted, the measurement location within the spot, as well as storage time and temperature were evaluated, showing no relevant impact of these parameters. Application to 233 patient samples revealed a good correlation between the Hct determined on whole blood and the predicted Hct determined on venous DBS. The bias obtained with Bland and Altman analysis was -0.015 and the limits of agreement were -0.061 and 0.031, indicating that the simplified, noncontact Hct prediction method even outperforms the original method. In addition, using caffeine as a model compound, it was demonstrated that this simplified Hct prediction method can effectively be used to implement a Hct-dependent correction factor to DBS-based results to alleviate the Hct bias.


Bioanalysis | 2013

Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions

Pieter M.M. De Kesel; Nele Sadones; Sara Capiau; Willy E. Lambert; Christophe P. Stove


Analytical and Bioanalytical Chemistry | 2014

Potassium-based algorithm allows correction for the hematocrit bias in quantitative analysis of caffeine and its major metabolite in dried blood spots

Pieter M.M. De Kesel; Sara Capiau; Veronique Stove; Willy E. Lambert; Christophe P. Stove

Collaboration


Dive into the Pieter M.M. De Kesel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Veronique Stove

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge