Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pieter Spanoghe is active.

Publication


Featured researches published by Pieter Spanoghe.


Food and Chemical Toxicology | 2010

Effects of food processing on pesticide residues in fruits and vegetables: a meta-analysis approach.

Boitshepo Miriam Keikotlhaile; Pieter Spanoghe; Walter Steurbaut

Pesticides are widely used in food production to increase food security despite the fact that they can have negative health effects on consumers. Pesticide residues have been found in various fruits and vegetables; both raw and processed. One of the most common routes of pesticide exposure in consumers is via food consumption. Most foods are consumed after passing through various culinary and processing treatments. A few literature reviews have indicated the general trend of reduction or concentration of pesticide residues by certain methods of food processing for a particular active ingredient. However, no review has focused on combining the obtained results from different studies on different active ingredients with differences in experimental designs, analysts and analysis equipment. In this paper, we present a meta-analysis of response ratios as a possible method of combining and quantifying effects of food processing on pesticide residue levels. Reduction of residue levels was indicated by blanching, boiling, canning, frying, juicing, peeling and washing of fruits and vegetables with an average response ratio ranging from 0.10 to 0.82. Baking, boiling, canning and juicing indicated both reduction and increases for the 95% and 99.5% confidence intervals.


PLOS ONE | 2011

Multiple Insecticide Resistance: An Impediment to Insecticide-Based Malaria Vector Control Program

Delenasaw Yewhalaw; Fantahun Wassie; Walter Steurbaut; Pieter Spanoghe; Wim Van Bortel; Leen Denis; Dejene A. Tessema; Yehenew Getachew; Marc Coosemans; Luc Duchateau; Niko Speybroeck

Background Indoor Residual Spraying (IRS), insecticide-treated nets (ITNs) and long-lasting insecticidal nets (LLINs) are key components in malaria prevention and control strategy. However, the development of resistance by mosquitoes to insecticides recommended for IRS and/or ITNs/LLINs would affect insecticide-based malaria vector control. We assessed the susceptibility levels of Anopheles arabiensis to insecticides used in malaria control, characterized basic mechanisms underlying resistance, and evaluated the role of public health use of insecticides in resistance selection. Methodology/Principal findings Susceptibility status of An. arabiensis was assessed using WHO bioassay tests to DDT, permethrin, deltamethrin, malathion and propoxur in Ethiopia from August to September 2009. Mosquito specimens were screened for knockdown resistance (kdr) and insensitive acetylcholinesterase (ace-1R) mutations using AS-PCR and PCR-RFLP, respectively. DDT residues level in soil from human dwellings and the surrounding environment were determined by Gas Chromatography with Electron Capture Detector. An. arabiensis was resistant to DDT, permethrin, deltamethrin and malathion, but susceptible to propoxur. The West African kdr allele was found in 280 specimens out of 284 with a frequency ranged from 95% to 100%. Ace-1R mutation was not detected in all specimens scored for the allele. Moreover, DDT residues were found in soil samples from human dwellings but not in the surrounding environment. Conclusion The observed multiple-resistance coupled with the occurrence of high kdr frequency in populations of An. arabiensis could profoundly affect the malaria vector control programme in Ethiopia. This needs an urgent call for implementing rational resistance management strategies and integrated vector control intervention.


Chemosphere | 2008

Sorption kinetics and its effects on retention and leaching

Tineke De Wilde; Jan Mertens; Pieter Spanoghe; Jaak Ryckeboer; Peter Jaeken; Dirk Springael

Sorption of pesticides to substrates used in biopurification systems is important as it controls the systems efficiency. Ideally, pesticide sorption should occur fast so that leaching of the pesticide in the biopurification system is minimized. Although modeling of pesticide transport commonly assumes equilibrium, this may not always be true in practice. Sorption kinetics have to be taken into account. This study investigated the batch sorption kinetics of linuron, isoproturon, metalaxyl, isoxaben and lenacil on substrates commonly used in a biopurification system, i.e. cow manure, straw, willow chopping, sandy loam soil, coconut chips, garden waste compost and peat mix. The first-order sorption kinetics model was fitted to the observed pesticide concentrations versus time resulting in an estimated kinetic rate constant alpha. Sorption appeared to be fast for the pesticides linuron and isoxaben, pesticides which were classified as immobile, while less mobile pesticides displayed an overall slower sorption. However, the substrate does not seem to be the main parameter influencing the sorption kinetics. Coconut chips, which is a substrate with a high organic matter content showed slow sorption for most of the pesticides. The effect of different estimated alpha values on the breakthrough of pesticides through a biopurification system was evaluated using the HYDRUS 1D model. Significant differences in leaching behavior were observed as a result of the obtained differences in sorption kinetics.


Chemosphere | 2009

Sorption characteristics of pesticides on matrix substrates used in biopurification systems

Tineke De Wilde; Pieter Spanoghe; Jaak Ryckeboer; Peter Jaeken; Dirk Springael

On-farm biopurification systems were developed to remove pesticides from contaminated water generated at the farmyard. An important process in the systems efficiency is the sorption of pesticides to the substrates used in the biopurification systems. The composition and type of material present in the biobed are crucial for retention of chemicals. This study investigated the sorption of linuron, isoproturon, metalaxyl, isoxaben, bentazon and lenacil on substrates commonly used in a biopurification system, i.e. cow manure, straw, willow chopping, soil, coconut chips, garden waste compost, and peat mix. Linear, Freundlich, and Langmuir sorption isotherms were fitted to the obtained data. The best fit was obtained with the Freundlich model. More immobile pesticides (i.e. linuron and isoxaben) tended to associate with the organic substrate, while more mobile pesticides partition in the water (i.e. bentazon). According to sorption capacity, the substrates could be classified as peat mix > compost, coco chips, straw > cow manure, willow chopping > sandy loam soil. Sorption capacity was positively correlated with the organic carbon content, CaO and the cation exchange capacity. Furthermore, no significant differences in sorption could be found between technical and formulated isoproturon and bentazon. Moreover, the individual sorption coefficient K(d) was additive, which means that individual sorption coefficients can be used to calculate the sorption coefficients of a mixture of substrates. What concerns the mutual interaction of pesticides it could be observed that the sorption of linuron and metalaxyl was significantly lower in combination with isoproturon and bentazon, while the latter pesticides were not influenced by the presence of linuron and metalaxyl. As guidelines, firstly, it could be stated that using the most sorbing materials such as peat mix, might significantly increase the biopurification systems efficiency. Secondly, the treatment of very mobile pesticides, such as bentazon, should be taken with care as these will easily leach through the system. Additional chemical treatment might be necessary for these type of pesticides.


Environmental Pollution | 2009

Characterizing pesticide sorption and degradation in macro scale biopurification systems using column displacement experiments

Tineke De Wilde; Pieter Spanoghe; Jan Mertens; Kristel Sniegowksi; Jaak Ryckeboer; Peter Jaeken; Dirk Springael

Biopurification systems treating pesticide contaminated water are very efficient, however they operate as a black box. Processes inside the system are not yet characterized. To optimize the performance, knowledge of degradation and retention processes needs to be generated. Therefore, displacement experiments were carried out for four pesticides (isoproturon, bentazone, metalaxyl, linuron) in columns containing different organic mixtures. Bromide, isoproturon and bentazone breakthrough curves (BTCs) were well described using the convection-dispersion equation (CDE) and a first-order degradation kinetic approach. Metalaxyl and linuron BTCs were well described using the CDE model expanded with Monod-type kinetics. Freundlich sorption, first-order degradation and Monod kinetics coefficients were fitted to the BTCs. Fitted values of the distribution coefficient K(f,column) were much lower than those determined from batch experiments. Based on mobility, pesticides were ranked as: bentazone>metalaxyl-isoproturon>linuron. Based on degradability, pesticides were ranked as: linuron>metalaxyl-isoproturon>bentazone.


FEMS Microbiology Ecology | 2011

Improvement of pesticide mineralization in on‐farm biopurification systems by bioaugmentation with pesticide‐primed soil

Kristel Sniegowski; Karolien Bers; Kris Van Goetem; Jaak Ryckeboer; Peter Jaeken; Pieter Spanoghe; Dirk Springael

Microcosms were used to examine whether pesticide-primed soils could be preferentially used over nonprimed soils for bioaugmentation of on-farm biopurification systems (BPS) to improve pesticide mineralization. Microcosms containing a mixture of peat, straw and either linuron-primed soil or nonprimed soil were irrigated with clean or linuron-contaminated water. The lag time of linuron mineralization, recorded for microcosm samples, was indicative of the dynamics of the linuron-mineralizing biomass in the system. Bioaugmentation with linuron-primed soil immediately resulted in the establishment of a linuron-mineralizing capacity, which increased in size when fed with the pesticide. Also, microcosms containing nonprimed soil developed a linuron-mineralizing population, but after extended linuron feeding. Additional experiments showed that linuron-mineralization only developed with some nonprimed soils. Concomitant with the increase in linuron degradation capacity, targeted PCR-denaturing gradient gel electrophoresis showed the proliferation of a Variovorax phylotype related to the linuron-degrading Variovorax sp. SRS16 in microcosms containing linuron-primed soil, suggesting the involvement of Variovorax in linuron degradation. The correlation between the appearance of specific Variovorax phylotypes and linuron mineralization capacity was less clear in microcosms containing nonprimed soil. The data indicate that supplementation of pesticide-primed soil results in the establishment of pesticide-mineralizing populations in a BPS matrix with more certainty and more rapidly than the addition of nonprimed soil.


PLOS ONE | 2011

Toxicity Ranking and Toxic Mode of Action Evaluation of Commonly Used Agricultural Adjuvants on the Basis of Bacterial Gene Expression Profiles

Ingrid Nobels; Pieter Spanoghe; Geert Haesaert; Johan Robbens; Ronny Blust

The omnipresent group of pesticide adjuvants are often referred to as “inert” ingredients, a rather misleading term since consumers associate this term with “safe”. The upcoming new EU regulation concerning the introduction of plant protection products on the market (EC1107/2009) includes for the first time the demand for information on the possible negative effects of not only the active ingredients but also the used adjuvants. This new regulation requires basic toxicological information that allows decisions on the use/ban or preference of use of available adjuvants. In this study we obtained toxicological relevant information through a multiple endpoint reporter assay for a broad selection of commonly used adjuvants including several solvents (e.g. isophorone) and non-ionic surfactants (e.g. ethoxylated alcohols). The used assay allows the toxicity screening in a mechanistic way, with direct measurement of specific toxicological responses (e.g. oxidative stress, DNA damage, membrane damage and general cell lesions). The results show that the selected solvents are less toxic than the surfactants, suggesting that solvents may have a preference of use, but further research on more compounds is needed to confirm this observation. The gene expression profiles of the selected surfactants reveal that a phenol (ethoxylated tristyrylphenol) and an organosilicone surfactant (ethoxylated trisiloxane) show little or no inductions at EC20 concentrations, making them preferred surfactants for use in different applications. The organosilicone surfactant shows little or no toxicity and good adjuvant properties. However, this study also illustrates possible genotoxicity (induction of the bacterial SOS response) for several surfactants (POEA, AE, tri-EO, EO FA and EO NP) and one solvent (gamma-butyrolactone). Although the number of compounds that were evaluated is rather limited (13), the results show that the used reporter assay is a promising tool to rank commonly used agricultural adjuvants based on toxicity and toxic mode of action data.


Precision Agriculture | 2009

Effects on pesticide spray drift of the physicochemical properties of the spray liquid

Mieke De Schampheleire; David Nuyttens; Katrijn Baetens; Wim Cornelis; Donald Gabriëls; Pieter Spanoghe

This research was on the effect of the physicochemical properties of the spray liquid on pesticide spray drift. Ten pesticide spray liquids with various physicochemical properties were selected for study. Some of these spray liquids were also examined with the addition of a polymer drift-retardant. In the first part, laboratory tests were performed to measure surface tension, viscosity, evaporation rate and density of the spray liquids. Subsequently, drift experiments were performed in a wind tunnel. From the results it was found that the dynamic surface tension is a major drift-determining factor, and also that the addition of a polymer drift-retardant can reduce drift significantly by increasing the viscosity. Drift reduction was found to be less effective with spray liquids of emulsifiable and suspendable formulation types than with spray liquids of water-dispersible granules and powders.


Applied and Environmental Microbiology | 2011

Robust Linuron Degradation in On-Farm Biopurification Systems Exposed to Sequential Environmental Changes

Kristel Sniegowski; Karolien Bers; Jaak Ryckeboer; Peter Jaeken; Pieter Spanoghe; Dirk Springael

ABSTRACT On-farm biopurification systems (BPS) treat pesticide-contaminated wastewater of farms through biodegradation. Adding pesticide-primed soil has been shown to be beneficial for the establishment of pesticide-degrading populations in BPS. However, no data exist on the response of pesticide-degrading microbiota, either endogenous or introduced with pesticide-primed soil, when BPS are exposed to expected less favorable environmental conditions like cold periods, drought periods, and periods without a pesticide supply. Therefore, the response of microbiota mineralizing the herbicide linuron in BPS microcosm setups inoculated either with a linuron-primed soil or a nonprimed soil to a sequence of such less favorable conditions was examined. A period without linuron supply or a drought period reduced the size of the linuron-mineralizing community in both setups. The most severe effect was recorded for the setup containing nonprimed soil, in which stopping the linuron supply decreased the linuron degradation capacity to nondetectable levels. In both systems, linuron mineralization rapidly reestablished after conventional operation conditions were restored. A cold period and feeding with a pesticide mixture did not affect linuron mineralization. The changes in the linuron-mineralizing capacity in microcosms containing primed soil were associated with the dynamics of a particular Variovorax phylotype that previously had been associated with linuron mineralization. This study suggests that the pesticide-mineralizing community in BPS is robust in stress situations imposed by changes in environmental conditions expected to occur on farms. Moreover, it suggests that, in cases where effects do occur, recovery is rapid after restoring conventional operation conditions.


Pest Management Science | 2012

Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables

Eva Brusselman; Bert Beck; S Pollet; Femke Temmerman; Pieter Spanoghe; Maurice Moens; David Nuyttens

BACKGROUND The present study compared entomopathogenic nematode delivery at the base of savoy cabbage and cauliflower, at the lower side of savoy cabbage and cauliflower leaves and in leek stems and the ground deposition using a five-nozzle spray boom equipped with an ISO 08 flat fan, an air induction flat fan and Twinjet spray nozzles. Additionally, an air support system and a row application system were evaluated. RESULTS Approximately 40% of the applied nematodes did not reach the foot of the cabbage plants. The use of an air support system or a row application system improved nematode deposition at the savoy cabbage base. Relative nematode deposition on the lower side of savoy cabbage leaves was 27.20%, while only 2.64% of the applied nematodes reached the lower side of cauliflower leaves. After spraying leek with a standard boom, a low relative nematode deposition (26.64%) was measured in the leek stem. Nozzle type affected the distribution of nematodes in droplet spots. CONCLUSION Nozzle type has a minor effect on the number of entomopathogenic nematodes delivered on difficult-to-reach targets. The use of modified spray application techniques directing the spray to the target site are necessary to increase the chances of contact of entomopathogenic nematodes with their target.

Collaboration


Dive into the Pieter Spanoghe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Springael

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Jaak Ryckeboer

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge