Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pieter Spincemaille is active.

Publication


Featured researches published by Pieter Spincemaille.


PLOS ONE | 2015

Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures.

Kim Vriens; Tanne L. Cools; Peta J. Harvey; David J. Craik; Pieter Spincemaille; David Cassiman; Annabel Braem; J. Vleugels; Peter H. Nibbering; Jan W. Drijfhout; Barbara De Coninck; Bruno P. A. Cammue; Karin Thevissen

Plant defensins are small, cysteine-rich peptides with antifungal activity against a broad range of yeast and fungi. In this study we investigated the antibiofilm activity of a plant defensin from coral bells (Heuchera sanguinea), i.e. HsAFP1. To this end, HsAFP1 was heterologously produced using Pichia pastoris as a host. The recombinant peptide rHsAFP1 showed a similar antifungal activity against the plant pathogen Fusarium culmorum as native HsAFP1 purified from seeds. NMR analysis revealed that rHsAFP1 consists of an α-helix and a triple-stranded antiparallel β-sheet stabilised by four intramolecular disulfide bonds. We found that rHsAFP1 can inhibit growth of the human pathogen Candida albicans as well as prevent C. albicans biofilm formation with a BIC50 (i.e. the minimum rHsAFP1 concentration required to inhibit biofilm formation by 50% as compared to control treatment) of 11.00 ± 1.70 μM. As such, this is the first report of a plant defensin exhibiting inhibitory activity against fungal biofilms. We further analysed the potential of rHsAFP1 to increase the activity of the conventional antimycotics caspofungin and amphotericin B towards C. albicans. Synergistic effects were observed between rHsAFP1 and these compounds against both planktonic C. albicans cells and biofilms. Most notably, concentrations of rHsAFP1 as low as 0.53 μM resulted in a synergistic activity with caspofungin against pre-grown C. albicans biofilms. rHsAFP1 was found non-toxic towards human HepG2 cells up to 40 μM, thereby supporting the lack of a general cytotoxic activity as previously reported for HsAFP1. A structure-function study with 24-mer synthetic peptides spanning the entire HsAFP1 sequence revealed the importance of the γ-core and its adjacent regions for HsAFP1 antibiofilm activity. These findings point towards broad applications of rHsAFP1 and its derivatives in the field of antifungal and antibiofilm drug development.


Gut | 2015

Roux-en-y gastric bypass attenuates hepatic mitochondrial dysfunction in mice with non-alcoholic steatohepatitis

Jef Verbeek; Matthias Lannoo; Eija Pirinen; Dongryeol Ryu; Pieter Spincemaille; Ingrid Vander Elst; Petra Windmolders; Karin Thevissen; Bruno P. A. Cammue; Jos van Pelt; Sabine Fransis; Peter Van Eyken; Chantal Ceuterick-de Groote; Paul P. Van Veldhoven; Pierre Bedossa; Frederik Nevens; Johan Auwerx; David Cassiman

Objective No therapy for non-alcoholic steatohepatitis (NASH) has been approved so far. Roux-en-y gastric bypass (RYGB) is emerging as a therapeutic option, although its effect on NASH and related hepatic molecular pathways is unclear from human studies. We studied the effect of RYGB on pre-existent NASH and hepatic mitochondrial dysfunction—a key player in NASH pathogenesis—in a novel diet-induced mouse model nicely mimicking human disease. Design C57BL/6J mice were fed a high-fat high-sucrose diet (HF-HSD). Results HF-HSD led to early obesity, insulin resistance and hypercholesterolaemia. HF-HSD consistently induced NASH (steatosis, hepatocyte ballooning and inflammation) with fibrosis already after 12-week feeding. NASH was accompanied by hepatic mitochondrial dysfunction, characterised by decreased mitochondrial respiratory chain (MRC) complex I and IV activity, ATP depletion, ultrastructural abnormalities, together with higher 4-hydroxynonenal (HNE) levels, increased uncoupling protein 2 (UCP2) and tumour necrosis factor-α (TNF-α) mRNA and free cholesterol accumulation. In our model of NASH and acquired mitochondrial dysfunction, RYGB induced sustained weight loss, improved insulin resistance and inhibited progression of NASH, with a marked reversal of fibrosis. In parallel, RYGB preserved hepatic MRC complex I activity, restored ATP levels, limited HNE production and decreased TNF-α mRNA. Conclusions Progression of NASH and NASH-related hepatic mitochondrial dysfunction can be prevented by RYGB. RYGB preserves respiratory chain complex activity, thereby restoring energy output, probably by limiting the amount of oxidative stress and TNF-α. These data suggest that modulation of hepatic mitochondrial function contributes to the favourable effect of RYBG on established NASH.


Biochimica et Biophysica Acta | 2014

The plant decapeptide OSIP108 prevents copper-induced apoptosis in yeast and human cells

Pieter Spincemaille; Gursimran Chandhok; Benjamin Newcomb; Jef Verbeek; Kim Vriens; Andree Zibert; Hartmut Schmidt; Yusuf A. Hannun; Jos van Pelt; David Cassiman; Bruno P. A. Cammue; Karin Thevissen

We previously identified the Arabidopsis thaliana-derived decapeptide OSIP108, which increases tolerance of plants and yeast cells to oxidative stress. As excess copper (Cu) is known to induce oxidative stress and apoptosis, and is characteristic for the human pathology Wilson disease, we investigated the effect of OSIP108 on Cu-induced toxicity in yeast. We found that OSIP108 increased yeast viability in the presence of toxic Cu concentrations, and decreased the prevalence of Cu-induced apoptotic markers. Next, we translated these results to the human hepatoma HepG2 cell line, demonstrating anti-apoptotic activity of OSIP108 in this cell line. In addition, we found that OSIP108 did not affect intracellular Cu levels in HepG2 cells, but preserved HepG2 mitochondrial ultrastructure. As Cu is known to induce acid sphingomyelinase activity of HepG2 cells, we performed a sphingolipidomic analysis of OSIP108-treated HepG2 cells. We demonstrated that OSIP108 decreased the levels of several sphingoid bases and ceramide species. Moreover, exogenous addition of the sphingoid base dihydrosphingosine abolished the protective effect of OSIP108 against Cu-induced cell death in yeast. These findings indicate the potential of OSIP108 to prevent Cu-induced apoptosis, possibly via its effects on sphingolipid homeostasis.


Metabolic Engineering | 2017

Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors

Doriane Lorendeau; Gianmarco Rinaldi; Ruben Boon; Pieter Spincemaille; Kristine Metzger; Christian Jäger; Stefan Christen; Xiangyi Dong; Sabine Kuenen; Karin Voordeckers; Patrik Verstreken; David Cassiman; Pieter Vermeersch; Catherine M. Verfaillie; Karsten Hiller; Sarah-Maria Fendt

Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function, and whether this contributes to the peculiarity of tumor development versus neurodegeneration. We addressed this question by decoupling loss of SDH and complex I activity in cancer cells and neurons. We found that sole loss of SDH activity was not sufficient to recapitulate the metabolic phenotype of SDH mutant tumors, because it failed to decrease mitochondrial respiration and to activate reductive glutamine metabolism. These metabolic phenotypes were only induced upon the additional loss of complex I activity. Thus, we show that complex I function defines the metabolic differences between SDH mutation associated tumors and neurodegenerative diseases, which could open novel therapeutic options against both diseases.


Toxicology and Applied Pharmacology | 2014

The plant decapeptide OSIP108 prevents copper-induced toxicity in various models for Wilson disease.

Pieter Spincemaille; Duc-Hung Pham; Gursimran Chandhok; Jef Verbeek; Andree Zibert; Louis Libbrecht; Hartmut Schmidt; Camila V. Esguerra; Peter de Witte; Bruno P. A. Cammue; David Cassiman; Karin Thevissen

BACKGROUND Wilson disease (WD) is caused by accumulation of excess copper (Cu) due to a mutation in the gene encoding the liver Cu transporter ATP7B, and is characterized by acute liver failure or cirrhosis and neuronal cell death. We investigated the effect of OSIP108, a plant derived decapeptide that prevents Cu-induced apoptosis in yeast and human cells, on Cu-induced toxicity in various mammalian in vitro models relevant for WD and in a Cu-toxicity zebrafish larvae model applicable to WD. METHODS The effect of OSIP108 was evaluated on viability of various cell lines in the presence of excess Cu, on liver morphology of a Cu-treated zebrafish larvae strain that expresses a fluorescent reporter in hepatocytes, and on oxidative stress levels in wild type AB zebrafish larvae. RESULTS OSIP108 increased not only viability of Cu-treated CHO cells transgenically expressing ATP7B and the common WD-causing mutant ATP7B(H1069Q), but also viability of Cu-treated human glioblastoma U87 cells. Aberrancies in liver morphology of Cu-treated zebrafish larvae were observed, which were further confirmed as Cu-induced hepatotoxicity by liver histology. Injections of OSIP108 into Cu-treated zebrafish larvae significantly increased the amount of larvae with normal liver morphology and decreased Cu-induced production of reactive oxygen species. CONCLUSIONS OSIP108 prevents Cu-induced toxicity in in vitro models and in a Cu-toxicity zebrafish larvae model applicable to WD. GENERAL SIGNIFICANCE All the above data indicate the potential of OSIP108 as a drug lead for further development as a novel WD treatment.


Microbial Cell | 2014

Sphingolipids and mitochondrial function, lessons learned from yeast

Pieter Spincemaille; Bruno P. A. Cammue; Karin Thevissen

Mitochondrial dysfunction is a hallmark of several neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease, but also of cancer, diabetes and rare diseases such as Wilson’s disease (WD) and Niemann Pick type C1 (NPC). Mitochondrial dysfunction underlying human pathologies has often been associated with an aberrant cellular sphingolipid metabolism. Sphingolipids (SLs) are important membrane constituents that also act as signaling molecules. The yeast Saccharomyces cerevisiae has been pivotal in unraveling mammalian SL metabolism, mainly due to the high degree of conservation of SL metabolic pathways. In this review we will first provide a brief overview of the major differences in SL metabolism between yeast and mammalian cells and the use of SL biosynthetic inhibitors to elucidate the contribution of specific parts of the SL metabolic pathway in response to for instance stress. Next, we will discuss recent findings in yeast SL research concerning a crucial signaling role for SLs in orchestrating mitochondrial function, and translate these findings to relevant disease settings such as WD and NPC. In summary, recent research shows that S. cerevisiae is an invaluable model to investigate SLs as signaling molecules in modulating mitochondrial function, but can also be used as a tool to further enhance our current knowledge on SLs and mitochondria in mammalian cells.


Biochimica et Biophysica Acta | 2014

Sphingolipids and Mitochondrial Function in Budding Yeast

Pieter Spincemaille; Nabil Matmati; Yusuf A. Hannun; Bruno P. A. Cammue; Karin Thevissen

BACKGROUND Sphingolipids (SLs) are not only key components of cellular membranes, but also play an important role as signaling molecules in orchestrating both cell growth and apoptosis. In Saccharomyces cerevisiae, three complex SLs are present and hydrolysis of either of these species is catalyzed by the inositol phosphosphingolipid phospholipase C (Isc1p). Strikingly, mutants deficient in Isc1p display several hallmarks of mitochondrial dysfunction such as the inability to grow on a non-fermentative carbon course, increased oxidative stress and aberrant mitochondrial morphology. SCOPE OF REVIEW In this review, we focus on the pivotal role of Isc1p in regulating mitochondrial function via SL metabolism, and on Sch9p as a central signal transducer. Sch9p is one of the main effectors of the target of rapamycin complex 1 (TORC1), which is regarded as a crucial signaling axis for the regulation of Isc1p-mediated events. Finally, we describe the retrograde response, a signaling event originating from mitochondria to the nucleus, which results in the induction of nuclear target genes. Intriguingly, the retrograde response also interacts with SL homeostasis. MAJOR CONCLUSIONS All of the above suggests a pivotal signaling role for SLs in maintaining correct mitochondrial function in budding yeast. GENERAL SIGNIFICANCE Studies with budding yeast provide insight on SL signaling events that affect mitochondrial function.


PLOS ONE | 2016

Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa

Evelien Gerits; Eline Blommaert; Anna Lippell; Alex J. O’Neill; Bram Weytjens; Dries De Maeyer; Ana Carolina Fierro; Kathleen Marchal; Arnaud Marchand; Patrick Chaltin; Pieter Spincemaille; Katrijn De Brucker; Karin Thevissen; Bruno P. A. Cammue; Toon Swings; Veerle Liebens; Maarten Fauvart; Natalie Verstraeten; Jan Michiels

Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies.


Liver International | 2016

ADAMTS5 deficiency protects against non-alcoholic steatohepatitis in obesity

Dries Bauters; Pieter Spincemaille; Lotte Geys; David Cassiman; Pieter Vermeersch; Pierre Bedossa; Ilse Scroyen; H.R. Lijnen

Increased prevalence of obesity is paralleled by an increase in non‐alcoholic steatohepatitis (NASH). We previously found that the expression of ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin type 1 motifs; member 5) is enhanced in expanding adipose tissue. However, no information is available on a potential role in liver pathology. We studied the effect of ADAMTS5 deficiency on NASH in mice.


Current protocols in mouse biology | 2016

An Overview of Mouse Models of Nonalcoholic Steatohepatitis: From Past to Present

Ans Jacobs; Anne‐Sophie Warda; Jef Verbeek; David Cassiman; Pieter Spincemaille

Non‐alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world. It is associated with obesity and type 2 diabetes and represents a spectrum of histological abnormalities ranging from simple steatosis to non‐alcoholic steatohepatitis (NASH), which can further progress to fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and liver failure. To gain insight into the pathogenesis and evaluate treatment options, mouse models of NAFLD/NASH are of utmost importance. There is a high phenotypical variety in the available mouse models, however, models that truly display the full spectrum of histopathological and metabolic features associated with human NASH are rare. In this review, we summarize the most important NAFLD/NASH mouse models that have been developed over the years and briefly highlight the pros and cons. Also, we illustrate the preclinical research in which these models have been used.

Collaboration


Dive into the Pieter Spincemaille's collaboration.

Top Co-Authors

Avatar

Karin Thevissen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

David Cassiman

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bruno P. A. Cammue

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jef Verbeek

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bruno Cammue

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Kim Vriens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Petra Windmolders

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jos van Pelt

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Jos van Pelt

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge