Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pieter Vanormelingen is active.

Publication


Featured researches published by Pieter Vanormelingen.


Ecology | 2007

Historical processes constrain patterns in global diatom diversity

Wim Vyverman; Elie Verleyen; Koen Sabbe; Koenraad Vanhoutte; Mieke Sterken; Dominic A. Hodgson; David G. Mann; Steve Juggins; Bart Van de Vijver; Vivienne J. Jones; Roger J. Flower; D Roberts; Victor A. Chepurnov; Cathy Kilroy; Pieter Vanormelingen; Aaike De Wever

There is a long-standing belief that microbial organisms have unlimited dispersal capabilities, are therefore ubiquitous, and show weak or absent latitudinal diversity gradients. In contrast, using a global freshwater diatom data set, we show that latitudinal gradients in local and regional genus richness are present and highly asymmetric between both hemispheres. Patterns in regional richness are explained by the degree of isolation of lake districts, while the number of locally coexisting diatom genera is highly constrained by the size of the regional diatom pool, habitat availability, and the connectivity between habitats within lake districts. At regional to global scales, historical factors explain significantly more of the observed geographic patterns in genus richness than do contemporary environmental conditions. Together, these results stress the importance of dispersal and migration in structuring diatom communities at regional to global scales. Our results are consistent with predictions from the theory of island biogeography and metacommunity concepts and likely underlie the strong provinciality and endemism observed in the relatively isolated diatom floras in the Southern Hemisphere.


Biodiversity and Conservation | 2008

The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism

Pieter Vanormelingen; Elie Verleyen; Wim Vyverman

It has been claimed that microbial taxa will not exhibit endemism because their enormous populations remove dispersal as an effective constraint on geographical range. Here we review evidence that challenges this ubiquity hypothesis for the most speciose group of microbial eukaryotes, the diatoms. Detailed taxonomic inventories using fine-grained morphological characteristics, molecular markers, and crossing experiments have revealed that the geographic distribution of diatoms ranges from global to narrow endemic. Records of human-mediated introductions of exotic species further provide a strong indication that geographic dispersal was limiting in the past. Finally, recent studies have revealed that diatom community structure and diversity are influenced by geographical factors independent of environmental conditions. Diatom communities are thus regulated by the same processes that operate in macro-organisms, although possibly to a different degree, implying that dispersal limitation is significant and the endemism observed in isolated areas is real. These results underscore the pressing need to (1) continue research into diatom biology, ecology and the factors driving diatom species diversity and geographic distributions, and (2) protect relatively isolated areas against further introductions of exotic species.


European Journal of Phycology | 2014

DNA-based species delimitation in algae

Frederik Leliaert; Heroen Verbruggen; Pieter Vanormelingen; Frederique Steen; Juan M. Lopez-Bautista; Giuseppe C. Zuccarello; Olivier De Clerck

Given the problems of species delimitation in algae using morphology or sexual compatibility, molecular data are becoming the standard for delimiting species and testing their traditional boundaries. The idea that species are separately evolving metapopulation lineages, along with theoretical progress in phylogenetic and population genetic analyses, has led to the development of new methods of species delimitation. We review these recent developments in DNA-based species delimitation methods, and discuss how they have changed and continue to change our understanding of algal species boundaries. Although single-locus approaches have proven effective for a first rapid and large-scale assessment of species diversity, species delimitation based on single gene trees falls short due to gene tree–species tree incongruence, caused by confounding processes like incomplete lineage sorting, trans-species polymorphism, hybridization and introgression. Data from unlinked loci and multi-species coalescent methods, which combine principles from phylogenetics and population genetics, may now be able to account for these complicating factors. Several of these methods also provide statistical support regarding species boundaries, which is important because speciation is a process and therefore uncertainty about precise species boundaries is inevitable in recently diverged lineages.


Journal of Eukaryotic Microbiology | 2013

An inordinate fondness? The number, distributions, and origins of diatom species.

David G. Mann; Pieter Vanormelingen

The number of extant species of diatoms is estimated here to be at least 30,000 and probably ca. 100,000, by extrapolation from an eclectic sample of genera and species complexes. Available data, although few, indicate that the pseudocryptic species being discovered in many genera are not functionally equivalent. Molecular sequence data show that some diatom species are ubiquitously dispersed. A good case can be made that at least some diatom species and even a few genera are endemics, but many such claims are still weak. The combination of very large species numbers and relatively rapid dispersal in diatoms is inconsistent with some versions of the “ubiquity hypothesis” of protist biogeography, and appears paradoxical. However, population genetic data indicate geographical structure in all the (few) marine and freshwater species that have been examined in detail, sometimes over distances of a few tens of kilometres. The mode of speciation may often be parapatric, in the context of a constantly shifting mosaic of temporarily isolated (meta) populations, but if our “intermediate dispersal hypothesis” is true (that long‐distance dispersal is rare, but not extremely rare), allopatric speciation could also be maximized.


Proceedings of the Royal Society of London B: Biological Sciences | 2009

Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia

Aaike De Wever; Frederik Leliaert; Elie Verleyen; Pieter Vanormelingen; Katleen Van der Gucht; Dominic A. Hodgson; Koen Sabbe; Wim Vyverman

Recent data revealed that metazoans such as mites and springtails have persisted in Antarctica throughout several glacial–interglacial cycles, which contradicts the existing paradigm that terrestrial life was wiped out by successive glacial events and that the current inhabitants are recent colonizers. We used molecular phylogenetic techniques to study Antarctic microchlorophyte strains isolated from lacustrine habitats from maritime and continental Antarctica. The 14 distinct chlorophycean and trebouxiophycean lineages observed point to a wide phylogenetic diversity of apparently endemic Antarctic lineages at different taxonomic levels. This supports the hypothesis that long-term survival took place in glacial refugia, resulting in a specific Antarctic flora. The majority of the lineages have estimated ages between 17 and 84 Ma and probably diverged from their closest relatives around the time of the opening of Drake Passage (30–45 Ma), while some lineages with longer branch lengths have estimated ages that precede the break-up of Gondwana. The variation in branch length and estimated age points to several independent but rare colonization events.


PLOS ONE | 2011

Lack of Phylogeographic Structure in the Freshwater Cyanobacterium Microcystis aeruginosa Suggests Global Dispersal

Ineke van Gremberghe; Frederik Leliaert; Joachim Mergeay; Pieter Vanormelingen; Katleen Van der Gucht; Ann-Eline Debeer; Gissell Lacerot; Luc De Meester; Wim Vyverman

Background Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographic structuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography. Methodology/Principal Findings The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNA internal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS types were detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected. Conclusions/Significance The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution.


Journal of Chromatography A | 2011

Evaluation of ionic liquid stationary phases for one dimensional gas chromatography―mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota

Qun Gu; Frank David; Frederic Lynen; Pieter Vanormelingen; Wim Vyverman; Klaus Rumpel; Guowang Xu; Pat Sandra

Ionic liquid stationary phases were tested for one dimensional gas chromatography-mass spectrometry (GC-MS) and comprehensive two dimensional gas chromatography (GC×GC) of fatty acid methyl esters from algae. In comparison with polyethylene glycol and cyanopropyl substituted polar stationary phases, ionic liquid stationary phases SLB-IL 82 and SLB-IL 100 showed comparable resolution, but lower column bleeding with MS detection, resulting in better sensitivity. The selectivity and polarity of the ionic liquid phases are similar to a highly polar biscyanopropyl-silicone phase (e.g. HP-88). In GC×GC, using an apolar polydimethyl siloxane×polar ionic liquid column combination, an excellent group-type separation of fatty acids with different carbon numbers and number of unsaturations was obtained, providing information that is complementary to GC-MS identification.


Protist | 2009

Natural hybrids in the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae): genetic and morphological evidence.

Griet Casteleyn; Nicolaus G. Adams; Pieter Vanormelingen; Ann-Eline Debeer; Koen Sabbe; Wim Vyverman

Hybridization between genetically distinguishable taxa provides opportunities for investigating speciation. While hybridization is a common phenomenon in various macro-organisms, natural hybridization among micro-eukaryotes is barely studied. Here we used a nuclear and a chloroplast molecular marker and morphology to demonstrate the presence of natural hybrids between two genetically and morphologically distinct varieties of the marine planktonic diatom Pseudo-nitzschia pungens (vars. pungens and cingulata) in a contact zone in the northeast Pacific. Cloning and sequencing of the rDNA internal transcribed spacer region revealed strains containing ribotypes from both varieties, indicating hybridization. Both varieties were found to also have different chloroplast-encoded rbcL sequences. Hybrid strains were either hetero- or homoplastidial, as demonstrated by denaturing gradient gel electrophoresis, which is in accordance with expectations based on the mode of chloroplast inheritance in Pseudo-nitzschia. While most hybrids are probably first generation, there are also indications for further hybridization. Morphologically, the hybrids resembled var. pungens for most characters rather than having an intermediate morphology. Further research should focus on the hybridization frequency, by assessing the spatial and temporal extent of the contact zone, and hybrid fitness, to determine the amount of gene flow between the two varieties and its evolutionary consequences.


BioEssays | 2008

In search of new tractable diatoms for experimental biology

Victor A. Chepurnov; David G. Mann; Peter von Dassow; Pieter Vanormelingen; Jeroen Gillard; Dirk Inzé; Koen Sabbe; Wim Vyverman

Diatoms are a species-rich group of photosynthetic eukaryotes, with enormous ecological significance and great potential for biotechnology. During the last decade, diatoms have begun to be studied intensively using modern molecular techniques and the genomes of four diatoms have been wholly or partially sequenced. Although new insights into the biology and evolution of diatoms are accumulating rapidly due to the availability of reverse genetic tools, the full potential of these molecular biological approaches can only be fully realized if experimental control of sexual crosses becomes firmly established and widely accessible to experimental biologists. Here we discuss the issue of choosing new models for diatom research, by taking into account the broader context of diatom mating systems and the place of sex in relation to the intricate cycle of cell size reduction and restitution that is characteristic of most diatoms. We illustrate the results of our efforts to select and develop experimental systems in diatoms, using species with typical life cycle attributes, which could be used as future model organisms to complement existing ones.


Plant Physiology | 2008

Physiological and Transcriptomic Evidence for a Close Coupling between Chloroplast Ontogeny and Cell Cycle Progression in the Pennate Diatom Seminavis robusta

Jeroen Gillard; Valerie Devos; Marie Jj Huysman; Lieven De Veylder; Sofie D'hondt; Cindy Martens; Pieter Vanormelingen; Katrijn Vannerum; Koen Sabbe; Victor A. Chepurnov; Dirk Inzé; Marnik Vuylsteke; Wim Vyverman

Despite the growing interest in diatom genomics, detailed time series of gene expression in relation to key cellular processes are still lacking. Here, we investigated the relationships between the cell cycle and chloroplast development in the pennate diatom Seminavis robusta. This diatom possesses two chloroplasts with a well-orchestrated developmental cycle, common to many pennate diatoms. By assessing the effects of induced cell cycle arrest with microscopy and flow cytometry, we found that division and reorganization of the chloroplasts are initiated only after S-phase progression. Next, we quantified the expression of the S. robusta FtsZ homolog to address the division status of chloroplasts during synchronized growth and monitored microscopically their dynamics in relation to nuclear division and silicon deposition. We show that chloroplasts divide and relocate during the S/G2 phase, after which a girdle band is deposited to accommodate cell growth. Synchronized cultures of two genotypes were subsequently used for a cDNA-amplified fragment length polymorphism-based genome-wide transcript profiling, in which 917 reproducibly modulated transcripts were identified. We observed that genes involved in pigment biosynthesis and coding for light-harvesting proteins were up-regulated during G2/M phase and cell separation. Light and cell cycle progression were both found to affect fucoxanthin-chlorophyll a/c-binding protein expression and accumulation of fucoxanthin cell content. Because chloroplasts elongate at the stage of cytokinesis, cell cycle-modulated photosynthetic gene expression and synthesis of pigments in concert with cell division might balance chloroplast growth, which confirms that chloroplast biogenesis in S. robusta is tightly regulated.

Collaboration


Dive into the Pieter Vanormelingen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Souffreau

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Mann

Royal Botanic Garden Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge