Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pieterjan Claes is active.

Publication


Featured researches published by Pieterjan Claes.


Journal of the American Chemical Society | 2009

Structures of silicon cluster cations in the gas phase.

Jonathan T. Lyon; Philipp Gruene; André Fielicke; Gerard Meijer; Ewald Janssens; Pieterjan Claes; Peter Lievens

We present gas-phase infrared spectra for small silicon cluster cations possessing between 6 and 21 atoms. Infrared multiple photon dissociation (IR-MPD) of these clusters complexed with a xenon atom is employed to obtain their vibrational spectra. These vibrational spectra give for the first time experimental data capable of distinguishing the exact internal structures of the silicon cluster cations. By comparing the experimental spectra with theoretical predictions based on density functional theory (DFT), unambiguous structural assignments for most of the Si(n)(+) clusters in this size range have been made. In particular, for Si(8)(+) an edge-capped pentagonal bypriamid structure, hitherto not considered, was assigned. These structural assignments provide direct experimental evidence for a cluster growth motif starting with a pentagonal bipyramid building block and changing to a trigonal prism for larger clusters.


Journal of Chemical Physics | 2009

Vibrational spectroscopy of neutral silicon clusters via far-IR-VUV two color ionization

André Fielicke; Jonathan T. Lyon; Marko Haertelt; Gerard Meijer; Pieterjan Claes; Jorg De Haeck; Peter Lievens

Tunable far-infrared-vacuum-ultraviolet two color ionization is used to obtain vibrational spectra of neutral silicon clusters in the gas phase. Upon excitation with tunable infrared light prior to irradiation with UV photons we observe strong enhancements in the mass spectrometric signal of specific cluster sizes. This allowed the recording of the infrared absorption spectra of Si(6), Si(7), and Si(10). Structural assignments were made by comparison with calculated linear absorption spectra from quantum chemical theory.


Journal of Chemical Physics | 2012

Gas-phase structures of neutral silicon clusters

Marko Haertelt; Jonathan T. Lyon; Pieterjan Claes; Jorg De Haeck; Peter Lievens; André Fielicke

Vibrational spectra of neutral silicon clusters Si(n), in the size range of n = 6-10 and for n = 15, have been measured in the gas phase by two fundamentally different IR spectroscopic methods. Silicon clusters composed of 8, 9, and 15 atoms have been studied by IR multiple photon dissociation spectroscopy of a cluster-xenon complex, while clusters containing 6, 7, 9, and 10 atoms have been studied by a tunable IR-UV two-color ionization scheme. Comparison of both methods is possible for the Si(9) cluster. By using density functional theory, an identification of the experimentally observed neutral cluster structures is possible, and the effect of charge on the structure of neutrals and cations, which have been previously studied via IR multiple photon dissociation, can be investigated. Whereas the structures of small clusters are based on bipyramidal motifs, a trigonal prism as central unit is found in larger clusters. Bond weakening due to the loss of an electron leads to a major structural change between neutral and cationic Si(8).


Journal of the American Chemical Society | 2010

Disparate effects of Cu and V on structures of exohedral transition metal-doped silicon clusters: a combined far-infrared spectroscopic and computational study.

Vu Thi Ngan; Philipp Gruene; Pieterjan Claes; Ewald Janssens; André Fielicke; Minh Tho Nguyen; Peter Lievens

The growth mechanisms of small cationic silicon clusters containing up to 11 Si atoms, exohedrally doped by V and Cu atoms, are described. We find that as dopants, V and Cu follow two different paths: while V prefers substitution of a silicon atom in a highly coordinated position of the cationic bare silicon clusters, Cu favors adsorption to the neutral or cationic bare clusters in a lower coordination site. The different behavior of the two transition metals becomes evident in the structures of Si(n)M(+) (n = 4-11 for M = V, and n = 6-11 for M = Cu), which are investigated by density functional theory and, for several sizes, confirmed by comparison with their experimental vibrational spectra. The spectra are measured on the corresponding Si(n)M(+)·Ar complexes, which can be formed for the exohedrally doped silicon clusters. The comparison between experimental and calculated spectra indicates that the BP86 functional is suitable to predict far-infrared spectra of these clusters. In most cases, the calculated infrared spectrum of the lowest-lying isomer fits well with the experiment, even when various isomers and different electronic states are close in energy. However, in a few cases, namely Si(9)Cu(+), Si(11)Cu(+), and Si(10)V(+), the experimentally verified isomers are not the lowest in energy according to the density functional theory calculations, but their structures still follow the described growth mechanism. The different growth patterns of the two series of doped Si clusters reflect the role of the transition metals 3d orbitals in the binding of the dopant atoms.


Chemistry: A European Journal | 2012

High Magnetic Moments in Manganese-Doped Silicon Clusters

Vu Thi Ngan; Ewald Janssens; Pieterjan Claes; Jonathan T. Lyon; André Fielicke; Minh Tho Nguyen; Peter Lievens

We report on the structural, electronic, and magnetic properties of manganese-doped silicon clusters cations, Si(n)Mn(+) with n=6-10, 12-14, and 16, using mass spectrometry and infrared spectroscopy in combination with density functional theory computations. This combined experimental and theoretical study allows several structures to be identified. All the exohedral Si(n)Mn(+) (n=6-10) clusters are found to be substitutive derivatives of the bare Si(n+1)(+) cations, while the endohedral Si(n)Mn(+) (n=12-14 and 16) clusters adopt fullerene-like structures. The hybrid B3P86 functional is shown to be appropriate in predicting the ground electronic states of the clusters and in reproducing their infrared spectra. The clusters turn out to have high magnetic moments localized on Mn. In particular the Mn atoms in the exohedral Si(n)Mn(+) (n=6-10) clusters have local magnetic moments of 4 μ(B) or 6 μ(B) and can be considered as magnetic copies of the silicon atoms. Opposed to other 3d transition-metal dopants, the local magnetic moment of the Mn atom is not completely quenched when encapsulated in a silicon cage.


Journal of Physical Chemistry A | 2011

Carbon Monoxide Adsorption on Silver Doped Gold Clusters

Jorg De Haeck; Nele Veldeman; Pieterjan Claes; Ewald Janssens; Mats R. Andersson; Peter Lievens

Well controlled gas phase experiments of the size and dopant dependent reactivity of gold clusters can shed light on the surprising discovery that nanometer sized gold particles are catalytically active. Most studies that investigate the reactivity of gold clusters in the gas phase focused on charged, small sized clusters. Here, reactivity measurements in a low-pressure reaction cell were performed to investigate carbon monoxide adsorption on neutral bare and silver doped gold clusters (Au(n)Ag(m); n = 10-45; m = 0, 1, 2) at 140 K. The size dependence of the reaction probabilities reflects the role of the electronic shells for the carbon monoxide adsorption, with closed electronic shell systems being the most reactive. In addition, the clusters reaction probability is reduced upon substitution of gold atoms for silver. Inclusion of a single silver atom causes significant changes in the reactivity only for a few cluster sizes, whereas there is a more general reduction in the reactivity with two silver atoms in the cluster. The experimental observations are qualitatively explained on the basis of a Blyholder model, which includes dopant induced features such as electron transfer from silver to gold, reduced s-d hybrization, and changes in the cluster geometry.


Journal of Physical Chemistry A | 2011

Electron distribution in partially reduced mixed metal oxide systems: Infrared spectroscopy of cemvnoo+ gas-phase clusters

Ling Jiang; Torsten Wende; Pieterjan Claes; Soumen Bhattacharyya; Marek Sierka; Gerard Meijer; Peter Lievens; Joachim Sauer; Knut R. Asmis

Vibrational predissociation spectra of rare-gas-tagged [(CeO(2))(VO(2))(1-2)](+) and [(Ce(2)O(3))(VO(2))](+) clusters are measured in the 400-1200 cm(-1) region. Density functional theory (DFT) is used to determine the geometric and electronic structure of low-energy isomers of the partially reduced clusters. Comparison of experimental and simulated spectra provides evidence for the larger stability of Ce(+3)/V(+5) compared to that of Ce(+4)/V(+4), which confirms that the exceptionally high reducibility of Ce(+4) accounts for the promoting role of ceria in supported vanadium oxide catalysts.


Journal of Chemical Physics | 2013

The structures of neutral transition metal doped silicon clusters, SinX (n = 6−9; X = V, Mn)

Pieterjan Claes; Vu Thi Ngan; Marko Haertelt; Jonathan T. Lyon; André Fielicke; Minh Tho Nguyen; Peter Lievens; Ewald Janssens

We present a combined experimental and theoretical investigation of small neutral vanadium and manganese doped silicon clusters Si(n)X (n = 6-9, X = V, Mn). These species are studied by infrared multiple photon dissociation and mass spectrometry. Structural identification is achieved by comparison of the experimental data with computed infrared spectra of low-lying isomers using density functional theory at the B3P86∕6-311+G(d) level. The assigned structures of the neutral vanadium and manganese doped silicon clusters are compared with their cationic counterparts. In general, the neutral and cationic Si(n)V(0,+) and Si(n)Mn(0,+) clusters have similar structures, although the position of the capping atoms depends for certain sizes on the charge state. The influence of the charge state on the electronic properties of the clusters is also investigated by analysis of the density of states, the shapes of the molecular orbitals, and NBO charge analysis of the dopant atom.


Journal of Physical Chemistry A | 2014

Structure Assignment, Electronic Properties, and Magnetism Quenching of Endohedrally Doped Neutral Silicon Clusters, SinCo (n = 10–12)

Yejun Li; Nguyen Minh Tam; Pieterjan Claes; Alex P. Woodham; Jonathan T. Lyon; Vu Thi Ngan; Minh Tho Nguyen; Peter Lievens; André Fielicke; Ewald Janssens

The structures of neutral cobalt-doped silicon clusters have been assigned by a combined experimental and theoretical study. Size-selective infrared spectra of neutral Si(n)Co (n = 10-12) clusters are measured using a tunable IR-UV two-color ionization scheme. The experimental infrared spectra are compared with calculated spectra of low-energy structures predicted at the B3P86 level of theory. It is shown that the Si(n)Co (n = 10-12) clusters have endohedral caged structures, where the silicon frameworks prefer double-layered structures encapsulating the Co atom. Electronic structure analysis indicates that the clusters are stabilized by an ionic interaction between the Co dopant atom and the silicon cage due to the charge transfer from the silicon valence sp orbitals to the cobalt 3d orbitals. Strong hybridization between the Co dopant atom and the silicon host quenches the local magnetic moment on the encapsulated Co atom.


ChemPhysChem | 2010

Far-infrared spectra of yttrium-doped gold clusters auny (n=1-9)

Ling Lin; Pieterjan Claes; Philipp Gruene; Gerard Meijer; André Fielicke; Minh Tho Nguyen; Peter Lievens

The geometric, spectroscopic, and electronic properties of neutral yttrium-doped gold clusters Au(n)Y (n=1-9) are studied by far-infrared multiple photon dissociation (FIR-MPD) spectroscopy and quantum chemical calculations. Comparison of the observed and calculated vibrational spectra allows the structures of the isomers present in the molecular beam to be determined. Most of the isomers for which the IR spectra agree best with experiment are calculated to be the energetically most stable ones. Attachment of xenon to the Au(n)Y cluster can cause changes in the IR spectra, which involve band shifts and band splittings. In some cases symmetry changes, as a result of the attachment of xenon atoms, were also observed. All the Au(n)Y clusters considered prefer a low spin state. In contrast to pure gold clusters, which exhibit exclusively planar lowest-energy structures for small sizes, several of the studied species are three-dimensional. This is particularly the case for Au(4)Y and Au(9)Y, while for some other sizes (n=5, 8) the 3D structures have an energy similar to that of their 2D counterparts. Several of the lowest-energy structures are quasi-2D, that is, slightly distorted from planar shapes. For all the studied species the Y atom prefers high coordination, which is different from other metal dopants in gold clusters.

Collaboration


Dive into the Pieterjan Claes's collaboration.

Top Co-Authors

Avatar

Peter Lievens

Laboratory of Solid State Physics

View shared research outputs
Top Co-Authors

Avatar

Ewald Janssens

Laboratory of Solid State Physics

View shared research outputs
Top Co-Authors

Avatar

André Fielicke

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minh Tho Nguyen

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Vu Thi Ngan

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge