Pietro Chiurazzi
Catholic University of the Sacred Heart
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pietro Chiurazzi.
Pediatric Research | 2001
Eloisa Gitto; Malgorzata Karbownik; Russel J. Reiter; Dun Xian Tan; Salvatore Cuzzocrea; Pietro Chiurazzi; Santa Cordaro; Giuseppina Corona; Giuseppe Trimarchi; Ignazio Barberi
Free radicals have been implicated in the pathogenesis of neonatal sepsis and its complications. This study was conducted to determine the changes in the clinical status and the serum levels of lipid peroxidation products [malondialdehyde (MDA) and 4-hydroxylalkenals (4-HDA)] in 10 septic newborns treated with the antioxidant melatonin given within the first 12 h after diagnosis. Ten other septic newborns in a comparable state were used as “septic” controls, while 10 healthy newborns served as normal controls. A total of 20 mg melatonin was administered orally in two doses of 10 mg each, with a 1-h interval. One blood sample was collected before melatonin administration and two additional blood samples (at 1 and 4 h) were collected after melatonin administration to assess serum levels of lipid peroxidation products. Serum MDA + 4-HDA concentrations in newborns with sepsis were significantly higher than those in healthy infants without sepsis; in contrast, in septic newborns treated with melatonin there was a significant reduction (p < 0.05) of MDA + 4-HDA to the levels in the normal controls at both 1 and 4 h (p < 0.05). Melatonin also improved the clinical outcome of the septic newborns as judged by measurement of sepsis-related serum parameters after 24 and 48 h. Three of 10 septic children who were not treated with melatonin died within 72 h after diagnosis of sepsis; none of the 10 septic newborns treated with melatonin died. To our knowledge, this is the first study where melatonin was given to human newborns.
Nature Neuroscience | 2007
Francesca Zalfa; Boris Eleuteri; Kirsten S. Dickson; Valentina Mercaldo; Silvia De Rubeis; Alessandra di Penta; Elisabetta Tabolacci; Pietro Chiurazzi; Giovanni Neri; Seth G. N. Grant; Claudia Bagni
Fragile X syndrome (FXS) results from the loss of the fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates a variety of cytoplasmic mRNAs. FMRP regulates mRNA translation and may be important in mRNA localization to dendrites. We report a third cytoplasmic regulatory function for FMRP: control of mRNA stability. In mice, we found that FMRP binds, in vivo, the mRNA encoding PSD-95, a key molecule that regulates neuronal synaptic signaling and learning. This interaction occurs through the 3′ untranslated region of the PSD-95 (also known as Dlg4) mRNA, increasing message stability. Moreover, stabilization is further increased by mGluR activation. Although we also found that the PSD-95 mRNA is synaptically localized in vivo, localization occurs independently of FMRP. Through our functional analysis of this FMRP target we provide evidence that dysregulation of mRNA stability may contribute to the cognitive impairments in individuals with FXS.
European Journal of Human Genetics | 2001
Pietro Chiurazzi; Charles E. Schwartz; Jozef Gecz; Giovanni Neri
X-linked mental retardation (XLMR) is a common cause of inherited intellectual disability with an estimated prevalence of ∼1/1000 males. Most XLMR conditions are inherited as X-linked recessive traits, although female carriers may manifest usually milder symptoms. We have listed 215 XLMR conditions, subdivided according to their clinical presentation: 149 with specific clinical findings, including 98 syndromes and 51 neuromuscular conditions, and 66 nonspecific (MRX) forms. We also present a map of the 82 XLMR genes cloned to date (November 2007) and a map of the 97 conditions that have been positioned by linkage analysis or cytogenetic breakpoints. We briefly consider the molecular function of known XLMR proteins and discuss the possible strategies to identify the remaining XLMR genes. Final remarks are made on the natural history of XLMR conditions and on diagnostic issues.
Journal of Medical Genetics | 2012
Claire Redin; Stephanie Gras; Oussema Mhamdi; Véronique Geoffroy; Corinne Stoetzel; Marie-Claire Vincent; Pietro Chiurazzi; Didier Lacombe; Ines Ouertani; Florence Petit; Marianne Till; Alain Verloes; Bernard Jost; H. Chaabouni; Hélène Dollfus; Jean-Louis Mandel; Jean Muller
Background Bardet-Biedl syndrome (BBS) is a pleiotropic recessive disorder that belongs to the rapidly growing family of ciliopathies. It shares phenotypic traits with other ciliopathies, such as Alström syndrome (ALMS), nephronophthisis (NPHP) or Joubert syndrome. BBS mutations have been detected in 16 different genes (BBS1-BBS16) without clear genotype-to-phenotype correlation. This extensive genetic heterogeneity is a major concern for molecular diagnosis and genetic counselling. While various strategies have been recently proposed to optimise mutation detection, they either fail to detect mutations in a majority of patients or are time consuming and costly. Method We tested a targeted exon-capture strategy coupled with multiplexing and high-throughput sequencing on 52 patients: 14 with known mutations as proof-of-principle and 38 with no previously detected mutation. Thirty genes were targeted in total including the 16 BBS genes, the 12 known NPHP genes, the single ALMS gene ALMS1 and the proposed modifier CCDC28B. Results This strategy allowed the reliable detection of causative mutations (including homozygous/heterozygous exon deletions) in 68% of BBS patients without previous molecular diagnosis and in all proof-of-principle samples. Three probands carried homozygous truncating mutations in ALMS1 confirming the major phenotypic overlap between both disorders. The efficiency of detecting mutations in patients was positively correlated with their compliance with the classical BBS phenotype (mutations were identified in 81% of ‘classical’ BBS patients) suggesting that only a few true BBS genes remain to be identified. We illustrate some interpretation problems encountered due to the multiplicity of identified variants. Conclusion This strategy is highly efficient and cost effective for diseases with high genetic heterogeneity, and guarantees a quality of coverage in coding sequences of target genes suited for diagnosis purposes.
Nature Genetics | 2012
Marcella Zollino; Daniela Orteschi; Marina Murdolo; Serena Lattante; Domenica Battaglia; Chiara Stefanini; Eugenio Mercuri; Pietro Chiurazzi; Giovanni Neri; Giuseppe Marangi
The chromosome 17q21.31 deletion syndrome is a genomic disorder characterized by highly distinctive facial features, moderate-to-severe intellectual disability, hypotonia and friendly behavior. Here, we show that de novo loss-of-function mutations in KANSL1 (also called KIAA1267) cause a full del(17q21.31) phenotype in two unrelated individuals that lack deletion at 17q21.31. These findings indicate that 17q21.31 deletion syndrome is a monogenic disorder caused by haploinsufficiency of KANSL1.
European Journal of Human Genetics | 2005
Elisabetta Tabolacci; Roberta Pietrobono; Umberto Moscato; Ben A. Oostra; Pietro Chiurazzi; Giovanni Neri
The fragile X syndrome is caused by a >200 CGG repeat expansion within the FMR1 gene promoter, with consequent DNA hypermethylation and inactivation of its expression. To further clarify the mechanisms that suppress the activity of the mutant gene and the conditions that may permit its reactivation, we investigated the acetylation and methylation status of three different regions of the FMR1 gene (promoter, exon 1 and exon 16) of three fragile X cell lines, using a chromatin immunoprecipitation (ChIP) assay with antibodies against acetylated-H3/H4 histones and against dimethylated lysine residues K4 and K9 of histone H3 (H3-K4 and H3-K9). We then coupled the ChIP assay with real-time PCR, obtaining absolute quantification of immunoprecipitated chromatin. Basal levels of histone acetylation and H3-K4 methylation were much higher in transcriptionally active wild-type controls than in inactive fragile X cell lines. Treatment of fragile X cell lines with the DNA demethylating drug 5-aza-2-deoxycytidine (5-azadC), known to reactivate the FMR1 gene, induced a decrease of H3-K9 methylation, an increase of H3 and H4 acetylation and an increase of H3-K4 methylation. Treatment with acetyl-L-carnitine (ALC), a compound that reduces the in vitro expression of the FRAXA fragile site without affecting DNA methylation, caused an increase of H3 and H4 acetylation. However, H3-K4 methylation remained extremely low, in accordance with the observation that ALC alone does not reactivate the FMR1 gene. Our experiments indicate that H3-K4 methylation and DNA demethylation are the main epigenetic switches activating the expression of the FMR1 gene, with histone acetylation playing an ancillary role.
American Journal of Medical Genetics | 1996
Herbert A. Lubs; Pietro Chiurazzi; J. Fernando Arena; Charles E. Schwartz; Lisbeth Tranebjærg; Giovanni Neri
A current list of all known forms of X-linked mental retardation (XLMR) and a slightly revised classification are presented. The number of known disorders has not increased because 6 disorders have been combined based on new molecular data or on clinical grounds and only 6 newly described XLMR disorders have been reported. Of the current 105 XLMR disorders, 34 have been mapped, and 18 disorders and 1 non-specific XLMR (FRAXE) have been cloned. The number of families with nonspecific XLMR with a LOD score of {ge}2.0 has more than doubled, with 42 (including FRAXE) now being known. A summary of the localization of presumed nonspecific mental retardation (MR) genes from well-studied X-chromosomal translocations and deletions is also included. Only 10-12 nonoverlapping loci are required to explain all localizations of non-specific MR from both approaches. These new trends mark the beginning of a significantly improved understanding of the role of genes on the X chromosome in producing MR. Continued close collaboration between clinical and molecular investigators will be required to complete the process. 105 refs., 2 figs., 6 tabs.
European Journal of Human Genetics | 2008
Elisabetta Tabolacci; Umberto Moscato; Francesca Zalfa; Claudia Bagni; Pietro Chiurazzi; Giovanni Neri
Fragile X syndrome (FXS) is caused by the expansion of a CGG repeat in the 5′UTR of the FMR1 gene and the subsequent methylation of all CpG sites in the promoter region. We recently identified, in unrelated FXS families, two rare males with an unmethylated full mutation, that is, with an expanded CGG repeat (>200 triplets) lacking the typical CpG methylation in the FMR1 promoter. These individuals are not mentally retarded and do not appear to be mosaic for premutation or methylated full mutation alleles. We established lymphoblastoid and fibroblast cell lines that showed essentially normal levels of the FMR1-mRNA but reduced translational efficiency of the corresponding mRNA. Epigenetic analysis of the FMR1 gene demonstrated the lack of DNA methylation and a methylation pattern of lysines 4 and 27 on histone H3 similar to that of normal controls, in accordance with normal transcription levels and consistent with a euchromatic configuration. On the other hand, histone H3/H4 acetylation and lysine 9 methylation on histone H3 were similar to those of typical FXS cell lines, suggesting that these epigenetic changes are not sufficient for FMR1 gene inactivation. These findings demonstrate remarkable consistency and suggest a common genetic mechanism causing this rare FMR1 epigenotype. The discovery of such a mechanism may be important in view of therapeutic attempts to convert methylated into unmethylated full mutations, restoring the expression of the FMR1 gene.
American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2005
Alessandra Terracciano; Pietro Chiurazzi; Giovanni Neri
Fragile X syndrome, the most common genetic disorder associated with mental retardation is caused by an expansion of the unstable CGG repeat within the FMR1 gene. Although overgrowth is not the main hallmark of this condition, the fragile X syndrome is usually included in the differential diagnosis of children with mental retardation and excess growth. This review highlights the most recent advances in the field of fragile X research.
Clinical Genetics | 2002
Ben A. Oostra; Pietro Chiurazzi
The fragile X syndrome represents the most common inherited cause of mental retardation worldwide. It is caused by a stretch of CGG repeats within the fragile X gene, which increases in length as it is transmitted from generation to generation. Once the repeat exceeds a threshold length, no protein is produced resulting in the fragile X phenotype. Ten years after the discovery of the gene, much has been learned about the function of the fragile X protein. Knowledge has been collected about the mutation mechanism, although still not all players that allow the destabilization of the CGG repeat are known.