Pietro Di Fazio
University of Marburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pietro Di Fazio.
Virchows Archiv | 2011
Karl Quint; Abbas Agaimy; Pietro Di Fazio; Roberta Montalbano; Claudia Steindorf; Rudolf Jung; Claus Hellerbrand; Arndt Hartmann; Helmut Sitter; Daniel Neureiter; Matthias Ocker
Histone deacetylases (HDAC) are responsible for the transcriptional control of genes through chromatin remodeling and control tumor suppressor genes. In several tumors, their expression has been linked to clinicopathological factors and patient survival. This study investigates HDACs 1, 2, 3, and 7 expressions in hepatocellular carcinoma (HCC) and their correlation with clinical data and patient survival. Tissue microarrays of 170 surgically resected primary HCCs and adjacent uninvolved tissue were evaluated immunohistochemically for the expression of HDACs 1, 2, 3, 7, and Ki-67 and were analyzed with respect to clinicopathological data and patient survival. HDACs 1, 2, 3, and Ki-67 were expressed significantly higher in cancer cells compared to normal tissue (HDAC1: p = 0.034, HDACs 2 and 3 and Ki-67: p < 0.001), while HDAC7 expression did not differ between HCC and non-cancerous liver tissue. In tumor tissue HDACs 1–3 expression levels showed high concordance with each other, Ki-67 and tumor grade (p < 0.001). High HDAC2 expression was associated with poor survival in low-grade and early-stage tumors (p < 0.05). The expression of the HDACs 1, 2, and 3 (but not HDAC7) isoenzymes correlates with clinicopathological factors, and HDAC2 expression has an impact on patient survival.
Analytical Cellular Pathology | 2010
Pietro Di Fazio; Regine Schneider-Stock; Daniel Neureiter; Kinya Okamoto; Tt Wissniowski; Susanne Gahr; Karl Quint; Matthias Meissnitzer; Beate Alinger; Roberta Montalbano; Gabriele Sass; Bernd Hohenstein; Eckhart G. Hahn; Matthias Ocker
Inhibition of deacetylases represents a new treatment option for human cancer diseases. We applied the novel and potent pan-deacetylase inhibitor panobinostat (LBH589) to human hepatocellular carcinoma models and investigated by which pathways tumor cell survival is influenced. HepG2 (p53wt) and Hep3B (p53null) responded to panobinostat treatment with a reduction of cell proliferation and a significant increase in apoptotic cell death at low micromolar concentrations. Apoptosis was neither mediated by the extrinsic nor the intrinsic pathway but quantitative RT-PCR showed an upregulation of CHOP, a marker of the unfolded protein response and endoplasmic reticulum stress with subsequent activation of caspase 12. Dependent on the p53 status, a transcriptional upregulation of p21cip1/waf1, an increased phosphorylation of H2AX, and an activation of the MAPK pathway were observed. In a subcutaneous xenograft model, daily i.p. injections of 10 mg/kg panobinostat lead to a significant growth delay with prolonged overall survival, mediated by reduced tumor cell proliferation, increased apoptosis and reduced angiogenesis in tumor xenografts. Panobinostat increased the acetylation of histones H3 and H4. Panobinostat is a well tolerated new treatment option for HCC that activates alternative pathways of apoptosis, also in p53-deficient tumors.
Experimental Cell Research | 2012
Pietro Di Fazio; Roberta Montalbano; Daniel Neureiter; Beate Alinger; Ansgar Schmidt; Anna Lena Merkel; K Quint; Matthias Ocker
Inhibitors of protein deacetylases represent a novel therapeutic option for cancer diseases due to their effects on transcriptional regulation by interfering with histones acetylation and on several other cellular pathways. Recently, their ability to modulate several transcription factors and, interestingly, also co-factors, which actively participate in formation and modulation of transcription complexes was shown. We here investigate whether HMGA2 (High Mobility Group AT-2 hook), a nuclear non-histone transcriptional co-factor with known oncogenic properties, can be influenced by the novel pan-deacetylase inhibitor panobinostat (LBH589) in human hepatocellular carcinoma models. Panobinostat strongly downregulated HMGA2 in HepG2 and Hep3B cells; this effect was mediated by transcriptional upregulation and promotion of the maturation of the tumorsuppressor miRNA hsa-let-7b, which could inhibit HMGA2 expression via RNA interference pathways. siRNA knockdown of HMGA2 or transfection of hsa-let-7b mimicking oligonucleotides confirmed the role of HMGA2 in regulating cell proliferation and apoptosis in liver cancer cell lines. Co-incubation with panobinostat showed an additive effect on inhibition of cell proliferation using an impedance-based real-time cell analyzer. Treatment of HepG2 xenografts with panobinostat also led to a downregulation of HMGA2 in vivo. These findings show that pan-deacetylase inhibitors also modulate other signaling pathways and networks than histone modifications to influence cell fate.
International Journal of Oncology | 2012
K Quint; Manuel Tonigold; Pietro Di Fazio; Roberta Montalbano; Susanne Lingelbach; Felix Rückert; Beate Alinger; Matthias Ocker; Daniel Neureiter
Objective response rates to standard chemotherapeutic regimens remain low in pancreatic cancer. Subpopulations of cells have been identified in various solid tumors which express stem cell-associated markers and are associated with increased resistance against radiochemotherapy. We investigated the expression of stem cell genes and markers of epithelial-mesenchymal transition in pancreatic cancer cells that survived high concentrations of gemcitabine treatment. Capan-1 and Panc-1 cells were continuously incubated with 1 and 10 µM gemcitabine. Surviving cells were collected after 1, 3 and 6 days. Expression of PDX-1, SHH, CD24, CD44, CD133, EpCAM, CBX7, OCT4, SNAIL, SLUG, TWIST, Ki-67, E-cadherin, β-catenin and vimentin were quantified by qPCR or immunocytochemistry. Migration was assessed by wound‑healing assay. SHH was knocked down using RNA interference. Five primary pancreatic cancer cell lines were used to validate the qPCR results. All investigated genes were upregulated after 6 days of gemcitabine incubation. Highest relative expression levels were observed for OCT4 (13.4-fold), CD24 (47.3-fold) and EpCAM (15.9-fold) in Capan-1 and PDX-1 (13.3‑fold), SHH (24.1-fold), CD44 (17.4-fold), CD133 (20.2-fold) and SLUG (15.2-fold) in Panc-1 cells. Distinct upregulation patterns were observed in the primary cells. Migration was increased in Panc-1 cells and changes in the expression of E-cadherin and β-catenin were typical of epithelial-mesenchymal transition in both cell lines. SHH knockdown reduced IC(50) from 30.1 to 27.6 nM in Capan-1 while it strongly inhibited proli-feration in Panc-1 cells. Cells surviving high-dose gemcitabine treatment express increased levels of stem cell genes, show characteristics associated with epithelial-mesenchymal transition and retain their proliferative capacity.
BMC Cancer | 2012
Steffen Zopf; Matthias Ocker; Daniel Neureiter; Beate Alinger; Susanne Gahr; Markus F. Neurath; Pietro Di Fazio
BackgroundHepatocellular carcinoma (HCC) still represents an unmet medical need. Epigenetic inactivation of tumor suppressor genes like RASSF1A or APC by overexpression of DNA methyltransferases (DNMTs) has been shown to be common in HCC and to be linked to the overall prognosis of patients. Inhibitors of protein and histone deacetylases (DACi) have been demonstrated to possess strong anti-tumor effects in HCC models.MethodsWe therefore investigated whether DACi also has any influence on the expression and activity of DNMTs and methylated target genes in HepG2 and Hep3B cell culture systems and in a xenograft model by immunohistochemistry, westernblotting, RT-qPCR and methylation-specific PCR.ResultsOur findings demonstrate a rapid inhibition of DNMT activity 6 h after treatment with 0.1 μM of the pan-DACi panobinostat. A downregulation of DNMT mRNAs and protein were also observed at later points in time. This loss of DNMT activity and expression was paralleled by a diminished methylation of the target genes RASSF1A and APC and a concomitant re-expression of APC mRNA and protein. Analysis of HepG2 xenograft specimens confirmed these results in vivo.ConclusionWe suggest a dual mode of action of DACi on DNA methylation status: a rapid inhibition of enzyme activity due to interference with posttranslational acetylation and a delayed effect on transcriptional control of DNMT genes by HDAC or miRNA mechanisms.
International Journal of Oncology | 2011
Christoph R. Gloesenkamp; Bianca Nitzsche; Matthias Ocker; Pietro Di Fazio; Karl Quint; Björn Hoffmann; Hans Scherübl; Michael Höpfner
Up-regulation of phosphatidylinositol-3-kinase (PI3K)-AKT signaling facilitates tumor cell growth and inhibits cell demise. The AKT-pathway also plays an important role in cytostatic therapy resistance and response to hypoxia and angiogenesis. Using real-time cell proliferation assay we examined the potency of triciribine in three distinct neuroendocrine gastrointestinal tumor cell lines. Also we investigated triciribines induction of apoptosis and effects on a broad range of cancer-associated gene products. Furthermore, we characterized the role of PTEN as a possible predictor of sensitivity to triciribine in GEP-NETs. We also looked for additive anti-neoplastic effects of triciribine when combined with conventional cytostatic drugs or other targeted drugs, affecting different molecules of the PI3K-AKT-pathway and we assessed the potency of triciribine to inhibit tumor growth in vivo, by using the chick chorioallantoic membrane assay. Treatment of insulinoma (CM) or gut neuroendocrine tumor cells (STC-1) with triciribine significantly reduced tumor cell growth by 59% and 65%, respectively. By contrast, the highly expressing PTEN carcinoid cell line BON did not respond, even at higher doses. Combinations of triciribine with classic cytostatic drugs as well as drugs targeting other molecules of the PI3K-AKT-pathway led to synergistic anti-proliferative effects. Additional in vivo-evaluations confirmed the anti-neoplastic potency of triciribine. Thus, our data show that inhibition the AKT-pathway potently reduces the growth of GEP-NET cells alone or in combination therapies. AKT inhibition may provide a rationale for future evaluations.
Molecular Carcinogenesis | 2015
Alexander Henrici; Roberta Montalbano; Daniel Neureiter; Michael Krause; Thorsten Stiewe; Emily P. Slater; K Quint; Matthias Ocker; Pietro Di Fazio
Deacetylase inhibitors (DACi) are a new class of drugs with a broad spectrum of mechanisms that favor their application in cancer therapy. Currently, the exact mechanisms and cellular effects of DACi have not been fully elucidated. In addition to their effects on histone acetylation, DACi can interfere with gene expression via miRNA pathways. Treatment with panobinostat (LBH589), a novel potent DACi, led to the highly aberrant modulation of several miRNAs in hepatocellular carcinoma (HCC) cell lines as shown by miRNA array analysis. Among them, hsa‐miR‐19a, hsa‐miR‐19b1 and the corresponding precursors were down‐regulated by panobinostat in TP53−/− Hep3B and TP53+/+ HepG2 cell lines; hsa‐miR30a‐5p mature form only was suppressed in both HCC cell lines, as confirmed by further RT‐qPCR analysis. In HCC cell lines, panobinostat caused the upregulation of the predicted miRNA targets APAF1 and Beclin1 protein levels. Transfection with oligonucleotides mimicking these miRNAs led to an increase in the viability rate of both cell lines as analyzed by impedance‐based real‐time cell analysis. In addition, transfecting miRNA mimicking oligonucleotides resulted in the decrease of APAF1, Beclin1 and PAK6 at the protein level, proving the regulating influence of the investigated miRNAs on gene final products. The overexpression of the above mentioned oncomiRs in Hep3B and HepG2 cell lines leads to cell proliferation and downregulation of cell death associated proteins. In our model, panobinostat exerts its anti‐cancer effect by suppressing these miRNAs and restoring the expression of their corresponding tumor suppressor targets.
Current Pharmaceutical Biotechnology | 2012
Pietro Di Fazio; Matthias Ocker; Roberta Montalbano
Discovery of small molecules able to induce several cellular self-killing mechanisms improved cancer therapy in the last years. Research focused on canonical apoptotic (mitochondria or death receptor related) pathways to induce cell death in several hematologic and solid malignancies, showing that treatment with different synthetic and natural compounds reactivates the cell death machinery previously silenced in resistant cancer cells. Besides the canonical apoptotic pathways, alternative pathways of cell death induction have recently been rediscovered as potential new targets for cancer therapy. Under certain conditions, protein folding can be disturbed causing an accumulation of unfolded proteins inside the endoplasmic reticulum (ER). This situation leads to stress ER, involving the transcriptional and translational machinery to induce the expression and post-transcriptional modifications of many factors involved in ER stress response mediated cell death. In this scenario, some apoptotic players like caspase 4 or caspase 12 start to control cell fate by inducing downstream cell death proteins. Recently, inhibitors of protein deacetylases have been demonstrated to potently induce this alternative cell death pathway and will be reviewed here.
Oncotarget | 2016
Christian Mayr; Andrej Wagner; Magdalena Loeffelberger; Daniela Bruckner; Martin Jakab; Frieder Berr; Pietro Di Fazio; Matthias Ocker; Daniel Neureiter; Martin Pichler; Tobias Kiesslich
BMI1 is a core component of the polycomb repressive complex 1 (PRC1) and is up-regulated in biliary tract cancer (BTC), contributing to aggressive clinical features. In this study we investigated the cytotoxic effects of PTC-209, a recently developed inhibitor of BMI1, in BTC cells. PTC-209 reduced overall viability in BTC cell lines in a dose-dependent fashion (0.04 - 20 μM). Treatment with PTC-209 led to slightly enhanced caspase activity and stop of cell proliferation. Cell cycle analysis revealed that PTC-209 caused cell cycle arrest at the G1/S checkpoint. A comprehensive investigation of expression changes of cell cycle-related genes showed that PTC-209 caused significant down-regulation of cell cycle-promoting genes as well as of genes that contribute to DNA synthesis initiation and DNA repair, respectively. This was accompanied by significantly elevated mRNA levels of cell cycle inhibitors. In addition, PTC-209 reduced sphere formation and, in a cell line-dependent manner, aldehyde dehydrogease-1 positive cells. We conclude that PTC-209 might be a promising drug for future in vitro and in vivo studies in BTC.
Journal of Cancer Research and Clinical Oncology | 2016
Alexander Damanakis; Sabine Eckhardt; Annette Wunderlich; Silvia Roth; Thaddeus T. Wissniowski; Detlef K. Bartsch; Pietro Di Fazio
PurposeThyroid cancer (TC), the most common endocrine malignancy, increases its incidence worldwide. MicroRNAs have been shown to be abnormally expressed in tumors and could represent valid diagnostic markers for patients affected by TC. Our aim was to analyze the expression of tumorsuppressor hsa-let7b-5p and hsa-let7f-5p, together with their predicted targets SLC5A5 (NIS) and HMGA2, in papillary (PTC), follicular (FTC) and anaplastic (ATC).Methods8 FTC, 14 PTC, 12 ATC and three normal thyroid tissue samples were analyzed for the expression of pre-let7b, hsa-let7b-5p and hsa-let7f-5p as SLC5A5 and HMGA2 by RT-qPCR. Data were analyzed by REST 2008.ResultsFTC patients showed a significant down-regulation of hsa-let7b-5p and its precursor. hsa-let7f-5p was overexpressed, and SLC5A5 was strongly suppressed. HMGA2 was overexpressed, reflecting no correlation with its regulatory let7 miRNAs. PTC samples were characterized by up-regulation of hsa-let7b-5p, its precursor and hsa-let7f-5p. SLC5A5 was strongly suppressed in comparison with normal thyroid tissue. HMGA2 was overexpressed, as shown in FTC, also. ATC samples showed a similar miRNAs profile as PTC. In contrast with FTC and PTC, these patients showed a stable or up-regulated SLC5A5 and HMGA2.ConclusionsExpression of HMGA2 is not correlated with the regulatory let7 miRNAs. Interestingly, SLC5A5 was down-regulated in FTC and PTC. Its expression could be modulated by hsa-let-7f-5p. ATC showed a loss of SLC5A5/hsa-let7f-5p correlation. SLC5A5, in ATC, needs further investigation to clarify the genetic/epigenetic mechanism altering its expression.