Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pietro Liò is active.

Publication


Featured researches published by Pietro Liò.


Cell | 2009

Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair

Anne Wilson; Elisa Laurenti; Gabriela M. Oser; Richard Carl Van der Wath; William Blanco-Bose; Maike Jaworski; Sandra Offner; Cyrille F. Dunant; Leonid Eshkind; Ernesto Bockamp; Pietro Liò; H. Robson MacDonald; Andreas Trumpp

Bone marrow hematopoietic stem cells (HSCs) are crucial to maintain lifelong production of all blood cells. Although HSCs divide infrequently, it is thought that the entire HSC pool turns over every few weeks, suggesting that HSCs regularly enter and exit cell cycle. Here, we combine flow cytometry with label-retaining assays (BrdU and histone H2B-GFP) to identify a population of dormant mouse HSCs (d-HSCs) within the lin(-)Sca1+cKit+CD150+CD48(-)CD34(-) population. Computational modeling suggests that d-HSCs divide about every 145 days, or five times per lifetime. d-HSCs harbor the vast majority of multilineage long-term self-renewal activity. While they form a silent reservoir of the most potent HSCs during homeostasis, they are efficiently activated to self-renew in response to bone marrow injury or G-CSF stimulation. After re-establishment of homeostasis, activated HSCs return to dormancy, suggesting that HSCs are not stochastically entering the cell cycle but reversibly switch from dormancy to self-renewal under conditions of hematopoietic stress.


Nature Genetics | 2004

Periodic gene expression program of the fission yeast cell cycle

Gabriella Rustici; Juan Mata; Katja Kivinen; Pietro Liò; Christopher J. Penkett; Gavin Burns; Jacqueline Hayles; Alvis Brazma; Paul Nurse; Jürg Bähler

Cell-cycle control of transcription seems to be universal, but little is known about its global conservation and biological significance. We report on the genome-wide transcriptional program of the Schizosaccharomyces pombe cell cycle, identifying 407 periodically expressed genes of which 136 show high-amplitude changes. These genes cluster in four major waves of expression. The forkhead protein Sep1p regulates mitotic genes in the first cluster, including Ace2p, which activates transcription in the second cluster during the M-G1 transition and cytokinesis. Other genes in the second cluster, which are required for G1-S progression, are regulated by the MBF complex independently of Sep1p and Ace2p. The third cluster coincides with S phase and a fourth cluster contains genes weakly regulated during G2 phase. Despite conserved cell-cycle transcription factors, differences in regulatory circuits between fission and budding yeasts are evident, revealing evolutionary plasticity of transcriptional control. Periodic transcription of most genes is not conserved between the two yeasts, except for a core set of ∼40 genes that seem to be universally regulated during the eukaryotic cell cycle and may have key roles in cell-cycle progression.


Trends in Genetics | 2001

Molecular phylogenetics: state-of-the- art methods for looking into the past

Simon Whelan; Pietro Liò; Nick Goldman

As the amount of molecular sequence data in the public domain grows, so does the range of biological topics that it influences through evolutionary considerations. In recent years, a number of developments have enabled molecular phylogenetic methodology to keep pace. Likelihood-based inferential techniques, although controversial in the past, lie at the heart of these new methods and are producing the promised advances in the understanding of sequence evolution. They allow both a wide variety of phylogenetic inferences from sequence data and robust statistical assessment of all results. It cannot remain acceptable to use outdated data analysis techniques when superior alternatives exist. Here, we discuss the most important and exciting methods currently available to the molecular phylogeneticist.


Bioinformatics | 2003

Wavelets in bioinformatics and computational biology: state of art and perspectives

Pietro Liò

MOTIVATION At a recent meeting, the wavelet transform was depicted as a small child kicking back at its father, the Fourier transform. Wavelets are more efficient and faster than Fourier methods in capturing the essence of data. Nowadays there is a growing interest in using wavelets in the analysis of biological sequences and molecular biology-related signals. RESULTS This review is intended to summarize the potential of state of the art wavelets, and in particular wavelet statistical methodology, in different areas of molecular biology: genome sequence, protein structure and microarray data analysis. I conclude by discussing the use of wavelets in modeling biological structures.


Circulation | 2011

Distinct Epigenomic Features in End-Stage Failing Human Hearts

Mehregan Movassagh; Mun-Kit Choy; David A. Knowles; Lina Cordeddu; Syed Haider; Thomas A. Down; Lee Siggens; Ana Vujic; Ilenia Simeoni; Chris Penkett; Martin Goddard; Pietro Liò; Martin R. Bennett; Roger Foo

Background— The epigenome refers to marks on the genome, including DNA methylation and histone modifications, that regulate the expression of underlying genes. A consistent profile of gene expression changes in end-stage cardiomyopathy led us to hypothesize that distinct global patterns of the epigenome may also exist. Methods and Results— We constructed genome-wide maps of DNA methylation and histone-3 lysine-36 trimethylation (H3K36me3) enrichment for cardiomyopathic and normal human hearts. More than 506 Mb sequences per library were generated by high-throughput sequencing, allowing us to assign methylation scores to ≈28 million CG dinucleotides in the human genome. DNA methylation was significantly different in promoter CpG islands, intragenic CpG islands, gene bodies, and H3K36me3-enriched regions of the genome. DNA methylation differences were present in promoters of upregulated genes but not downregulated genes. H3K36me3 enrichment itself was also significantly different in coding regions of the genome. Specifically, abundance of RNA transcripts encoded by the DUX4 locus correlated to differential DNA methylation and H3K36me3 enrichment. In vitro, Dux gene expression was responsive to a specific inhibitor of DNA methyltransferase, and Dux siRNA knockdown led to reduced cell viability. Conclusions— Distinct epigenomic patterns exist in important DNA elements of the cardiac genome in human end-stage cardiomyopathy. The epigenome may control the expression of local or distal genes with critical functions in myocardial stress response. If epigenomic patterns track with disease progression, assays for the epigenome may be useful for assessing prognosis in heart failure. Further studies are needed to determine whether and how the epigenome contributes to the development of cardiomyopathy.


Proceedings of the Royal Society of London B: Biological Sciences | 1999

Evidence for mitochondrial DNA recombination in a human population of island Melanesia

Erika Hagelberg; Nick Goldman; Pietro Liò; Simon Whelan; Wulf Schiefenhövel; J. B. Clegg; D. K. Bowden

Mitochondrial DNA (mtDNA) analysis has proved useful in studies of recent human evolution and the genetic affinities of human groups of different geographical regions. As part of an extensive survey of mtDNA diversity in present–day Pacific populations, we obtained sequence information of the hypervariable mtDNA control region of 452 individuals from various localities in the western Pacific. The mtDNA types fell into three major groups which reflect the settlement history of the area. Interestingly, we detected an extremely rare point mutation at high frequency in the small island of Nguna in the Melanesian archipelago of Vanuatu. Phylogenetic analysis of the mtDNA data indicated that the mutation was present in individuals of separate mtDNA lineages. We propose that the multiple occurrence of a rare mutation event in one isolated locality is highly improbable, and that recombination between different mtDNA types is a more likely explanation for our observation. If correct, this conclusion has important implications for the use of mtDNA in phylogenetic and evolutionary studies.


PLOS ONE | 2007

Biometric evidence that sexual selection has shaped the hominin face.

Eleanor M. Weston; Adrian Friday; Pietro Liò

We consider sex differences in human facial morphology in the context of developmental change. We show that at puberty, the height of the upper face, between the lip and the brow, develops differently in males and females, and that these differences are not explicable in terms of sex differences in body size. We find the same dimorphism in the faces of human ancestors. We propose that the relative shortening in men and lengthening in women of the anterior upper face at puberty is the mechanistic consequence of extreme maxillary rotation during ontogeny. A link between this developmental model and sexual dimorphism is made for the first time, and provides a new set of morphological criteria to sex human crania. This finding has important implications for the role of sexual selection in the evolution of anthropoid faces and for theories of human facial attractiveness.


BMC Evolutionary Biology | 2007

Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea

Antonio Carapelli; Pietro Liò; Francesco Nardi; Elizabeth van der Wath; Francesco Frati

BackgroundThe phylogeny of Arthropoda is still a matter of harsh debate among systematists, and significant disagreement exists between morphological and molecular studies. In particular, while the taxon joining hexapods and crustaceans (the Pancrustacea) is now widely accepted among zoologists, the relationships among its basal lineages, and particularly the supposed reciprocal paraphyly of Crustacea and Hexapoda, continues to represent a challenge. Several genes, as well as different molecular markers, have been used to tackle this problem in molecular phylogenetic studies, with the mitochondrial DNA being one of the molecules of choice. In this study, we have assembled the largest data set available so far for Pancrustacea, consisting of 100 complete (or almost complete) sequences of mitochondrial genomes. After removal of unalignable sequence regions and highly rearranged genomes, we used nucleotide and inferred amino acid sequences of the 13 protein coding genes to reconstruct the phylogenetic relationships among major lineages of Pancrustacea. The analysis was performed with Bayesian inference, and for the amino acid sequences a new, Pancrustacea-specific, matrix of amino acid replacement was developed and used in this study.ResultsTwo largely congruent trees were obtained from the analysis of nucleotide and amino acid datasets. In particular, the best tree obtained based on the new matrix of amino acid replacement (MtPan) was preferred over those obtained using previously available matrices (MtArt and MtRev) because of its higher likelihood score. The most remarkable result is the reciprocal paraphyly of Hexapoda and Crustacea, with some lineages of crustaceans (namely the Malacostraca, Cephalocarida and, possibly, the Branchiopoda) being more closely related to the Insecta s.s. (Ectognatha) than two orders of basal hexapods, Collembola and Diplura. Our results confirm that the mitochondrial genome, unlike analyses based on morphological data or nuclear genes, consistently supports the non monophyly of Hexapoda.ConclusionThe finding of the reciprocal paraphyly of Hexapoda and Crustacea suggests an evolutionary scenario in which the acquisition of the hexapod condition may have occurred several times independently in lineages descending from different crustacean-like ancestors, possibly as a consequence of the process of terrestrialization. If this hypothesis was confirmed, we should therefore re-think our interpretation of the evolution of the Arthropoda, where terrestrialization may have led to the acquisition of similar anatomical features by convergence. At the same time, the disagreement between reconstructions based on morphological, nuclear and mitochondrial data sets seems to remain, despite the use of larger data sets and more powerful analytical methods.


Bioinformatics | 2006

A novel algorithm and web-based tool for comparing two alternative phylogenetic trees

Tom M. W. Nye; Pietro Liò; Walter R. Gilks

SUMMARY We describe an algorithm and software tool for comparing alternative phylogenetic trees. The main application of the software is to compare phylogenies obtained using different phylogenetic methods for some fixed set of species or obtained using different gene sequences from those species. The algorithm pairs up each branch in one phylogeny with a matching branch in the second phylogeny and finds the optimum 1-to-1 map between branches in the two trees in terms of a topological score. The software enables the user to explore the corresponding mapping between the phylogenies interactively, and clearly highlights those parts of the trees that differ, both in terms of topology and branch length. AVAILABILITY The software is implemented as a Java applet at http://www.mrc-bsu.cam.ac.uk/personal/thomas/phylo_comparison/comparison_page.html. It is also available on request from the authors.


Journal of Molecular Evolution | 2000

Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes.

Renato Fani; Romina Gallo; Pietro Liò

Abstract. The pairs of nitrogen fixation genes nifDK and nifEN encode for the α and β subunits of nitrogenase and for the two subunits of the NifNE protein complex, involved in the biosynthesis of the FeMo cofactor, respectively. Comparative analysis of the amino acid sequences of the four NifD, NifK, NifE, and NifN in several archaeal and bacterial diazotrophs showed extensive sequence similarity between them, suggesting that their encoding genes constitute a novel paralogous gene family. We propose a two-step model to reconstruct the possible evolutionary history of the four genes. Accordingly, an ancestor gene gave rise, by an in-tandem paralogous duplication event followed by divergence, to an ancestral bicistronic operon; the latter, in turn, underwent a paralogous operon duplication event followed by evolutionary divergence leading to the ancestors of the present-day nifDK and nifEN operons. Both these paralogous duplication events very likely predated the appearance of the last universal common ancestor. The possible role of the ancestral gene and operon in nitrogen fixation is also discussed.

Collaboration


Dive into the Pietro Liò's collaboration.

Top Co-Authors

Avatar

Renato Fani

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaofeng Lu

Beijing University of Posts and Telecommunications

View shared research outputs
Researchain Logo
Decentralizing Knowledge