Pietro Liuzzo-Scorpo
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pietro Liuzzo-Scorpo.
Physical Review Letters | 2017
Pietro Liuzzo-Scorpo; Andrea Mari; Vittorio Giovannetti; Gerardo Adesso
Given a certain amount of entanglement available as a resource, what is the most efficient way to accomplish a quantum task? We address this question in the relevant case of continuous variable quantum teleportation protocols implemented using two-mode Gaussian states with a limited degree of entanglement and energy. We first characterize the class of single-mode phase-insensitive Gaussian channels that can be simulated via a Braunstein-Kimble protocol with nonunit gain and minimum shared entanglement, showing that infinite energy is not necessary apart from the special case of the quantum limited attenuator. We also find that apart from the identity, all phase-insensitive Gaussian channels can be simulated through a two-mode squeezed state with finite energy, albeit with a larger entanglement. We then consider the problem of teleporting single-mode coherent states with Gaussian-distributed displacement in phase space. Performing a geometrical optimization over phase-insensitive Gaussian channels, we determine the maximum average teleportation fidelity achievable with any finite entanglement and for any realistically finite variance of the input distribution.
Entropy | 2016
Pietro Liuzzo-Scorpo; Luis A. Correa; Rebecca Schmidt; Gerardo Adesso
The ability to initialize quantum registers in pure states lies at the core of many applications of quantum technologies, from sensing to quantum information processing and computation. In this paper, we tackle the problem of increasing the polarization bias of an ensemble of two-level register spins by means of joint coherent manipulations, involving a second ensemble of ancillary spins and energy dissipation into an external heat bath. We formulate this spin refrigeration protocol, akin to algorithmic cooling, in the general language of quantum feedback control, and identify the relevant thermodynamic variables involved. Our analysis is two-fold: on the one hand, we assess the optimality of the protocol by means of suitable figures of merit, accounting for both its work cost and effectiveness; on the other hand, we characterise the nature of correlations built up between the register and the ancilla. In particular, we observe that neither the amount of classical correlations nor the quantum entanglement seem to be key ingredients fuelling our spin refrigeration protocol. We report instead that a more general indicator of quantumness beyond entanglement, the so-called quantum discord, is closely related to the cooling performance.
Physical Review A | 2015
Leonardo A. M. Souza; Himadri Shekhar Dhar; Manabendra Nath Bera; Pietro Liuzzo-Scorpo; Gerardo Adesso
We investigate the non-Markovianity of continuous-variable Gaussian quantum channels through the evolution of an operational metrological quantifier, namely, the Gaussian interferometric power, which captures the minimal precision that can be achieved using bipartite Gaussian probes in a black-box phase estimation setup, where the phase shift generator is a priori unknown. We observe that the monotonicity of the Gaussian interferometric power under the action of local Gaussian quantum channels on the ancillary arm of the bipartite probes is a natural indicator of Markovian dynamics; consequently, its breakdown for specific maps can be used to construct a witness and an effective quantifier of non-Markovianity. In our work, we consider two paradigmatic Gaussian models, the damping master equation and the quantum Brownian motion, and identify analytically and numerically the parameter regimes that give rise to non-Markovian dynamics. We then quantify the degree of non-Markovianity of the channels in terms of Gaussian interferometric power, showing, in particular, that even nonentangled probes can be useful to witness non-Markovianity. This establishes an interesting link between the dynamics of bipartite continuous-variable open systems and their potential for optical interferometry. The results are an important supplement to the recent research on characterization of non-Markovianity in continuous-variable systems.
Physical Review Letters | 2018
Pietro Liuzzo-Scorpo; Andrea Mari; Vittorio Giovannetti; Gerardo Adesso
This corrects the article DOI: 10.1103/PhysRevLett.119.120503.
Physical Review Letters | 2017
Pietro Liuzzo-Scorpo; Wojciech Roga; Leonardo A. M. Souza; Nadja K. Bernardes; Gerardo Adesso
We investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-preserving channels. We introduce a hierarchy of such evolutions encompassing Markovian and weakly and strongly non-Markovian processes and provide simple criteria to distinguish between the classes, based on the degree of positivity of intermediate Gaussian maps. We present an intuitive classification of all one-mode Gaussian channels according to their non-Markovianity degree and show that weak non-Markovianity has an operational significance, as it leads to a temporary phase-insensitive amplification of Gaussian inputs beyond the fundamental quantum limit. Explicit examples and applications are discussed.
International Journal of Theoretical Physics | 2015
Pietro Liuzzo-Scorpo; Alessandro Cuccoli; Paola Verrucchi
In this work we investigate the relation between quantum measurements and decoherence, in order to formally express the necessity of the latter for obtaining an informative output from the former. To this aim, we analyse the dynamical behaviour of a particular model, which is often adopted in the literature for describing projector valued measures of discrete observables. The analysis is developed by a recently introduced method for studying open quantum systems, namely the parametric representation with environmental coherent states: this method allows us to determine a necessary condition that the evolved quantum state of the apparatus must fulfil in order to have the properties that a measurement scheme requests it to feature. We find that this condition strictly implies decoherence in the system object of the measurement, with respect to the eigenstates of the hermitian operator that represents the measured observable. The relevance of dynamical entanglement generation is highlighted, and consequences of the possible macroscopic structure of the measurement apparatus are also commented upon.
EPL | 2015
Pietro Liuzzo-Scorpo; Alessandro Cuccoli; Paola Verrucchi
We present a description of the measurement process based on the parametric representation with environmental coherent states. This representation is specifically tailored for studying quantum systems whose environment needs being considered through the quantum-to-classical cross-over. Focusing upon projective measures, and exploiting the connection between large-
arXiv: Quantum Physics | 2017
Gerardo Adesso; Pietro Liuzzo-Scorpo
N
Physical Review A | 2018
Rosanna Nichols; Pietro Liuzzo-Scorpo; Paul Knott; Gerardo Adesso
quantum theories and the classical limit of related ones, we manage to push our description beyond the pre-measurement step. This allows us to show that the outcome production follows from a global-symmetry breaking, entailing the observed systems state reduction, and that the statistical nature of the process is brought about, together with the Borns rule, by the macroscopic character of the measuring apparatus.
New Journal of Physics | 2018
Pietro Liuzzo-Scorpo; Luis A. Correa; Felix A. Pollock; Agnieszka Górecka; Kavan Modi; Gerardo Adesso
We investigate quantum teleportation of ensembles of coherent states of light with a Gaussian distributed displacement in phase space. Recently, the following general question has been addressed in [P. Liuzzo-Scorpo et al., arXiv:1705.03017]: Given a limited amount of entanglement and mean energy available as resources, what is the maximal fidelity that can be achieved on average in the teleportation of such an alphabet of states? Here, we consider a variation of this question, where Einstein–Podolsky–Rosen steering is used as a resource rather than plain entanglement. We provide a solution by means of an optimisation within the space of Gaussian quantum channels, which allows for an intuitive visualisation of the problem. We first show that not all channels are accessible with a finite degree of steering, and then prove that practical schemes relying on asymmetric two-mode Gaussian states enable one to reach the maximal fidelity at the border with the inaccessible region. Our results provide a rigorous quantitative assessment of steering as a resource for secure quantum teleportation beyond the so-called no-cloning threshold. The schemes we propose can be readily implemented experimentally by a conventional Braunstein–Kimble continuous variable teleportation protocol involving homodyne detections and corrective displacements with an optimally tuned gain. These protocols can be integrated as elementary building blocks in quantum networks, for reliable storage and transmission of quantum optical states.