Pietro Mazzuca
University of Brescia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pietro Mazzuca.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Riccardo Dolcetti; Cinzia Giagulli; Wangxiao He; Marina Selleri; Francesca Caccuri; Lindsay M. Eyzaguirre; Pietro Mazzuca; Silvia Corbellini; Federica Campilongo; Stefania Marsico; Emanuela Giombini; Elena Muraro; Gabriella Rozera; Paolo De Paoli; Antonino Carbone; Maria Rosaria Capobianchi; Giuseppe Ippolito; Simona Fiorentini; William A. Blattner; Wuyuan Lu; Robert C. Gallo; Arnaldo Caruso
Significance Non-Hodgkin lymphomas (NHLs) are associated with HIV-1 infection, but the HIV1 genome is not detectable in malignant B cells. Here we show that variants of the HIV-1 matrix protein p17 (vp17s) are detected in the NHL specimens of HIV+ patients. These vp17s are more frequently detected in HIV+ patients with NHL than in patients without NHL. These vp17s display a potent B-cell growth-promoting activity, which is exerted by activating the Akt signaling pathway. Results obtained by CD spectroscopy and thermal denaturation suggest that mutation-induced protein destabilization may lead to a conformational change potentially responsible for the viral protein to promote B-cell growth. Our results suggest that vp17s may have a role in sustaining lymphomagenesis, thus offering new opportunities to prevent and/or treat HIV-associated NHLs. Although in decline after successful anti-HIV therapy, B-cell lymphomas are still elevated in HIV-1-seropositive (HIV+) persons, and the mechanisms are obscure. The HIV-1 matrix protein p17 persists in germinal centers long after HIV-1 drug suppression, and some p17 variants (vp17s) activate Akt signaling and promote growth of transformed B cells. Here we show that vp17s derived from four of five non-Hodgkin lymphoma (NHL) tissues from HIV+ subjects display potent B-cell growth-promoting activity. They are characterized by amino acid insertions at position 117–118 (Ala–Ala) or 125–126 (Gly–Asn or Gly–Gln–Ala–Asn–Gln–Asn) among some other mutations throughout the sequence. Identical dominant vp17s are found in both tumor and plasma. Three of seven plasma samples from an independent set of NHL cases manifested multiple Ala insertions at position 117–118, and one with the Ala–Ala profile also promoted B-cell growth and activated Akt signaling. Ultradeep pyrosequencing showed that vp17s with C-terminal insertions are more frequently detected in plasma of HIV+ subjects with than without NHL. Insertion of Ala–Ala at position 117–118 into reference p17 (refp17) was sufficient to confer B-cell growth-promoting activity. In contrast, refp17 bearing the Gly–Asn insertion at position 125–126 did not, suggesting that mutations not restricted to the C terminus can also account for this activity. Biophysical analysis revealed that the Ala–Ala insertion mutant is destabilized compared with refp17, whereas the Gly–Asn form is stabilized. This finding provides an avenue for further exploration of structure function relationships and new treatment strategies in combating HIV-1–related NHL.
Scientific Reports | 2016
Francesca Caccuri; Maria Luisa Iaria; Federica Campilongo; Kristen M. Varney; Alessandro Rossi; Stefania Mitola; Silvia Schiarea; Antonella Bugatti; Pietro Mazzuca; Cinzia Giagulli; Simona Fiorentini; Wuyuan Lu; Mario Salmona; Arnaldo Caruso
The human immune deficiency virus type 1 (HIV-1) matrix protein p17 (p17), although devoid of a signal sequence, is released by infected cells and detected in blood and in different organs and tissues even in HIV-1-infected patients undergoing successful combined antiretroviral therapy (cART). Extracellularly, p17 deregulates the function of different cells involved in AIDS pathogenesis. The mechanism of p17 secretion, particularly during HIV-1 latency, still remains to be elucidated. A recent study showed that HIV-1-infected cells can produce Gag without spreading infection in a model of viral latency. Here we show that in Gag-expressing cells, secretion of biologically active p17 takes place at the plasma membrane and occurs following its interaction with phosphatidylinositol-(4,5)-bisphosphate and its subsequent cleavage from the precursor Gag (Pr55Gag) operated by cellular aspartyl proteases. These enzymes operate a more complex Gag polypeptide proteolysis than the HIV-1 protease, thus hypothetically generating slightly truncated or elongated p17s in their C-terminus. A 17 C-terminal residues excised p17 was found to be structurally and functionally identical to the full-length p17 demonstrating that the final C-terminal region of p17 is irrelevant for the protein’s biological activity. These findings offer new opportunities to identify treatment strategies for inhibiting p17 release in the extracellular microenvironment.
Journal of Virology | 2017
Pietro Mazzuca; Stefania Marsico; Kai Schulze; Stefania Mitola; Marina C. Pils; Cinzia Giagulli; Carlos A. Guzmán; Arnaldo Caruso; Francesca Caccuri
ABSTRACT AIDS-related lymphomas (ARLs) are expected to increase in the future since combined antiretroviral therapy (cART) enhances the life expectancy of HIV-1-infected (HIV+) patients but does not affect the occurrence of ARLs to the same extent as that of other tumors. Lymphangiogenesis is essential in supporting growth and metastatic spreading of ARLs. HIV-1 does not infect the neoplastic B cells, but HIV-1 proteins have been hypothesized to play a key role in sustaining a prolymphangiogenic microenvironment in lymphoid organs. The HIV-1 matrix protein p17 is detected in blood and accumulates in the germinal centers of lymph nodes of HIV+ patients under successful cART. The viral protein displays potent lymphangiogenic activity in vitro and in vivo. This is, at least in part, mediated by the secretion of the lymphangiogenic factor endothelin-1, suggesting that activation of a secretory pathway sustains the lymphangiogenic activity of p17. Here, we show that the p17 lymphangiogenic activity occurs on human lymph node-derived lymphatic endothelial cells (LN-LECs) under stress conditions only and relies entirely on activation of an autophagy-based pathway. In fact, induction of autophagy by p17 promotes lymphangiogenesis, whereas pharmacological and genetic inhibition of autophagy inhibits p17-triggered lymphangiogenesis. Similarly, the vasculogenic activity of p17 was totally inhibited in autophagy-incompetent mice. Our findings reveal a previously unrecognized role of autophagy in lymphangiogenesis and open the way to identify novel treatment strategies aimed at inhibiting aberrant tumor-driven lymphangiogenesis in HIV+ patients. IMPORTANCE AIDS-related lymphomas (ARLs) are the most common malignancies in HIV-1-infected (HIV+) patients after the introduction of combined antiretroviral therapy (cART). Lymphangiogenesis is of critical importance in sustaining growth and metastasis of ARLs. Indeed, enhanced lymphangiogenesis occurs in the lymph nodes of HIV+ patients under successful cART. The HIV-1 matrix protein p17 is detected in blood and accumulates in the lymph node germinal centers even in the absence of virus replication. Several findings suggest a key role for p17 as a microenvironmental factor capable of promoting lymphangiogenesis. Here, we show that p17 promotes lymphangiogenesis of human lymph node-derived lymphatic endothelial cells (LN-LECs). The lymphangiogenic activity of p17 is sustained by an autophagy-based pathway that enables LN-LECs to release prolymphangiogenic factors into the extracellular microenvironment. Our findings indicate that specific targeting of autophagy may provide an important new tool for treating ARLs.
Oncotarget | 2017
Francesca Caccuri; Roberto Ronca; Andrea S. Laimbacher; Angiola Berenzi; Nathalie Steimberg; Federica Campilongo; Pietro Mazzuca; Arianna Giacomini; Giovanna Mazzoleni; Anna Benetti; Elisabetta Caselli; Marco Presta; Dario Di Luca; Cornel Fraefel; Arnaldo Caruso
U94, the latency gene of human herpesvirus 6, was found to inhibit migration, invasion and proliferation of vascular endothelial cells (ECs). Because of its potent anti-migratory activity on ECs, we tested the capability of U94 to interfere with the individual steps of the metastatic cascade. We examined the U94 biological activity on the human breast cancer cell line MDA-MB 231, as a model of highly aggressive cancer cell. Here we show that the expression of U94 delivered by an HSV-1-based amplicon promoted down-modulation of Src and downstream molecules linked to cell motility and proliferation. Indeed, U94 expression strongly inhibited cell migration, invasiveness and clonogenicity. We investigated the effects of U94 in a three-dimensional rotary cell-culture system and observed the ability of U94 to modify tumor cell morphology by inducing a partial mesenchymal-to-epithelial transition. In fact, despite U94 did not induce any expression of the epithelial marker E-cadherin, it down-modulated different mesenchymal markers as β-catenin, Vimentin, TWIST, Snail1, and MMP2. In vivo data on the tumorigenicity of MDA-MB 231 displayed the capability of U94 to control tumor growth, invasiveness and metastasis, as well as tumor-driven angiogenesis. The antitumor U94 activity was also confirmed on the human cervical cancer cell line HeLa. The ability of U94 to inhibit cell growth, invasion and metastasis opens the way to a promising field of research aimed to develop new therapeutic approaches for treating tumor and cancer metastasis.
Fems Immunology and Medical Microbiology | 2018
Stefania Marsico; Francesca Caccuri; Pietro Mazzuca; Paola Apostoli; Sara Roversi; Giovanni Lorenzin; Alberto Zani; Simona Fiorentini; Cinzia Giagulli; Arnaldo Caruso
Human metapneumovirus (hMPV) has been identified as a major cause of lower respiratory tract infection in children. Epidemiological and molecular evidence has highlighted an association between severe childhood respiratory viral infection and chronic lung diseases, such as asthma and chronic obstructive pulmonary disease. Currently, animal models have demonstrated the ability of hMPV to persist in vivo suggesting a role of the virus in asthma development in children. However, mechanisms involved in hMPV persistence in the respiratory tract are not yet understood. In the present study we monitored hMPV infection in human alveolar epithelial A549 cells in order to understand if the virus is able to persist in these cells upon acute infection. Our data show that hMPV initially induces an apoptotic process in A549 cells through poly (ADP-ribose) polymerase 1 cleavage, caspase-3/7 activation and Wee1 activity. The hMPV-infected cells were then able to overcome the apoptotic pathway and cell cycle arrest in G2/M by expressing B-cell lymphoma 2 and to acquire a reservoir cell phenotype with constant production of infectious virus. These findings provide evidence of the ability of hMPV to persist in alveolar epithelial cells and help in understanding the mechanisms responsible for hMPV persistence in the human respiratory tract.
Infectious Agents and Cancer | 2017
Francesca Caccuri; Francesca Giordano; Ines Barone; Pietro Mazzuca; Cinzia Giagulli; Sebastiano Andò; Arnaldo Caruso; Stefania Marsico
BackgroundThe introduction of cART has changed the morbidity and mortality patterns affecting HIV-infected (HIV+) individuals. The risk of breast cancer in HIV+ patients has now approached the general population risk. However, breast cancer has a more aggressive clinical course and poorer outcome in HIV+ patients than in general population, without correlation with the CD4 or virus particles count. These findings suggest a likely influence of HIV-1 proteins on breast cancer aggressiveness and progression. The HIV-1 matrix protein (p17) is expressed in different tissues and organs of successfully cART-treated patients and promotes migration of different cells. Variants of p17 (vp17s), characterized by mutations and amino acid insertions, differently from the prototype p17 (refp17), also promote B-cell proliferation and transformation.MethodsWound-healing assay, matrigel-based invasion assay, and anchorage-independent proliferation assay were employed to compare the biological activity exerted by refp17 and three different vp17s on the triple-negative human breast cancer cell line MDA-MB 231. Intracellular signaling was investigated by western blot analysis.ResultsMotility and invasiveness increased in cells treated with both refp17 and vp17s compared to untreated cells. The effects of the viral proteins were mediated by binding to the chemokine receptor CXCR2 and activation of the ERK1/2 signaling pathway. However, vp17s promoted MDA-MB 231 cell growth and proliferation in contrast to refp17-treated or not treated cells.ConclusionsIn the context of the emerging role of the microenvironment in promoting and supporting cancer cell growth and metastatic spreading, here we provide the first evidence that exogenous p17 may play a crucial role in sustaining breast cancer cell migration and invasiveness, whereas some p17 variants may also be involved in cancer cell growth and proliferation.
Biochimica et Biophysica Acta | 2019
Wangxiao He; Pietro Mazzuca; Weirong Yuan; Kristen M. Varney; Antonella Bugatti; Alfredo Cagnotto; Cinzia Giagulli; Marco Rusnati; Stefania Marsico; Luisa Diomede; Mario Salmona; Arnaldo Caruso; Wuyuan Lu; Francesca Caccuri
BACKGROUND HIV-1 matrix protein p17 variants (vp17s) detected in HIV-1-infected patients with non-Hodgkins lymphoma (HIV-NHL) display, differently from the wild-type protein (refp17), B cell growth-promoting activity. Biophysical analysis revealed that vp17s are destabilized as compared to refp17, motivating us to explore structure-function relationships. METHODS We used: biophysical techniques (circular dichroism (CD), nuclear magnetic resonance (NMR) and thermal/GuHCL denaturation) to study protein conformation and stability; Surface plasmon resonance (SPR) to study interactions; Western blot to investigate signaling pathways; and Colony Formation and Soft Agar assays to study B cell proliferation and clonogenicity. RESULTS By forcing the formation of a disulfide bridge between Cys residues at positions 57 and 87 we obtained a destabilized p17 capable of promoting B cell proliferation. This finding prompted us to dissect refp17 to identify the functional epitope. A synthetic peptide (F1) spanning from amino acid (aa) 2 to 21 was found to activate Akt and promote B cell proliferation and clonogenicity. Three positively charged aa (Arg15, Lys18 and Arg20) proved critical for sustaining the proliferative activity of both F1 and HIV-NHL-derived vp17s. Lack of any interaction of F1 with the known refp17 receptors suggests an alternate one involved in cell proliferation. CONCLUSIONS The molecular reasons for the proliferative activity of vp17s, compared to refp17, relies on the exposure of a functional epitope capable of activating Akt. GENERAL SIGNIFICANCE Our findings pave the way for identifying the receptor(s) responsible for B cell proliferation and offer new opportunities to identify novel treatment strategies in combating HIV-related NHL.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Riccardo Dolcetti; Cinzia Giagulli; Wangxiao He; Marina Selleri; Francesca Caccuri; Lm Eyzaguirre; Pietro Mazzuca; Silvia Corbellini; Federica Campilongo; Stefania Marsico; Emanuela Giombini; Elena Muraro; Gabriella Rozera; P De Paoli; Antonino Carbone; Capobianchi; Giuseppe Ippolito; Simona Fiorentini; Wa Blattner; Wuyuan Lu; Rc Gallo; Arnaldo Caruso
MICROBIOLOGY Correction to Supporting Information for “Role of HIV-1 matrix protein p17 variants in lymphoma pathogenesis,” by Riccardo Dolcetti, Cinzia Giagulli, Wangxiao He, Marina Selleri, Francesca Caccuri, Lindsay M. Eyzaguirre, Pietro Mazzuca, Silvia Corbellini, Federica Campilongo, Stefania Marsico, Emanuela Giombini, Elena Muraro, Gabriella Rozera, Paolo De Paoli, Antonino Carbone, Maria Rosaria Capobianchi, Giuseppe Ippolito, Simona Fiorentini, William A. Blattner, Wuyuan Lu, Robert C. Gallo, and Arnaldo Caruso, which appeared in issue 46, November 17, 2015, of Proc Natl Acad Sci USA (112:14331–14336; first published November 2, 2015; 10.1073/pnas.1514748112). The authors note that Fig. S1 appeared incorrectly. The SI has been corrected online.
Archive | 2018
Pietro Mazzuca; Arnaldo Caruso; Francesca Caccuri
Archive | 2015
Augusto Pessina; Carlo Leonetti; Simona Artuso; Anna Benetti; Enrico Dessy; Luisa Pascucci; Daniela Passeri; Augusto Orlandi; Angiola Berenzi; Arianna Bonomi; Valentina Coccè; Valentina Ceserani; Anna Ferri; Marta Dossena; Pietro Mazzuca; Emilio Ciusani; P. Ceccarelli; Arnaldo Caruso; Nazario Portolani; Francesca Sisto; Eugenio Parati; Giulio Alessandri