Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pietro Piffanelli is active.

Publication


Featured researches published by Pietro Piffanelli.


Sexual Plant Reproduction | 1998

Biogenesis and function of the lipidic structures of pollen grains

Pietro Piffanelli; Joanne H.E. Ross; Denis J. Murphy

Abstract Pollen grains contain several lipidic structures, which play a key role in their development as male gametophytes. The elaborate extracellular pollen wall, the exine, is largely formed from acyl lipid and phenylpropanoid precursors, which together form the exceptionally stable biopolymer sporopollenin. An additional extracellular lipidic matrix, the pollen coat, which is particularly prominent in entomophilous plants, covers the interstices of the exine and has many important functions in pollen dispersal and pollen-stigma recognition. The sporopollenin and pollen coat precursors are both synthesised in the tapetum under the control of the sporophytic genome, but at different stages of development. Pollen grains also contain two major intracellular lipidic structures, namely storage oil bodies and an extensive membrane network. These intracellular lipids are synthesised in the vegetative cell of the pollen grain under the control of the gametophytic genome. Over the past few years there has been significant progress in elucidating the composition, biogenesis and function of these important pollen structures. The purpose of this review is to describe these recent advances within the historical context of research into pollen development.


Plant Physiology | 2002

The Barley MLO Modulator of Defense and Cell Death Is Responsive to Biotic and Abiotic Stress Stimuli

Pietro Piffanelli; Fasong Zhou; Catarina Casais; James Orme; Birgit Jarosch; Ulrich Schaffrath; Nicholas C. Collins; Ralph Panstruga; Paul Schulze-Lefert

Lack of the barley (Hordeum vulgare) seven-transmembrane domain MLO protein confers resistance against the fungal pathogen Blumeria graminis f. sp.hordei (Bgh). To broaden the basis for MLO structure/function studies, we sequenced additionalmlo resistance alleles, two of which confer only partial resistance. Wild-type MLO dampens the cell wall-restricted hydrogen peroxide burst at points of attempted fungal penetration of the epidermal cell wall, and in subtending mesophyll cells, it suppresses a second oxidative burst and cell death. Although theBgh-induced cell death in mlo plants is spatially and temporally separated from resistance, we show that the two processes are linked. Uninoculated mutant mlo plants exhibit spontaneous mesophyll cell death that appears to be part of accelerated leaf senescence. Mlo transcript abundance increases in response to Bgh, rice (Oryza sativa) blast, wounding, paraquat treatment, a wheat powdery mildew-derived carbohydrate elicitor, and during leaf senescence. This suggests a broad involvement of Mlo in cell death protection and in responses to biotic and abiotic stresses.


Journal of Molecular Evolution | 2003

Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family.

Alessandra Devoto; Henrik Hartmann; Pietro Piffanelli; Candace Elliott; Carl R. Simmons; Graziana Taramino; Chern-Sing Goh; Fred E. Cohen; Brent C. Emerson; Paul Schulze-Lefert; Ralph Panstruga

Homologues of barley Mlo encode the only family of seven-transmembrane (TM) proteins in plants. Their topology, subcellular localization, and sequence diversification are reminiscent of those of G-protein coupled receptors (GPCRs) from animals and fungi. We present a computational analysis of MLO family members based on 31 full-size and 3 partial sequences, which originate from several monocot species, the dicot Arabidopsis thaliana, and the moss Ceratodon purpureus. This enabled us to date the origin of the Mlo gene family back at least to the early stages of land plant evolution. The genomic organization of the corresponding genes supports a monophyletic origin of the Mlo gene family. Phylogenetic analysis revealed five clades, of which three contain both monocot and dicot members, while two indicate class-specific diversification. Analysis of the ratio of nonsynonymous-to-synonymous changes in coding sequences provided evidence for functional constraint on the evolution of the DNA sequences and purifying selection, which appears to be reduced in the first extracellular loop of 12 closely related orthologues. The 31 full-size sequences were examined for potential domain-specific intramolecular coevolution. This revealed evidence for concerted evolution of all three cytoplasmic domains with each other and the C-terminal cytoplasmic tail, suggesting interplay of all intracellular domains for MLO function.


Nature | 2004

A barley cultivation-associated polymorphism conveys resistance to powdery mildew

Pietro Piffanelli; Luke Ramsay; Robbie Waugh; Abdellah Benabdelmouna; Angélique D'Hont; Karin Hollricher; Jørgen Helms Jørgensen; Paul Schulze-Lefert; Ralph Panstruga

Barley (Hordeum vulgare) has played a pivotal role in Old World agriculture since its domestication about 10,000 yr ago. Barley plants carrying loss-of-function alleles (mlo) of the Mlo locus are resistant against all known isolates of the widespread powdery mildew fungus. The sole mlo resistance allele recovered so far from a natural habitat, mlo-11, was originally retrieved from Ethiopian landraces and nowadays controls mildew resistance in the majority of cultivated European spring barley elite varieties. Here we use haplotype analysis to show that the mlo-11 allele probably arose once after barley domestication. Resistance in mlo-11 plants is linked to a complex tandem repeat array inserted upstream of the wild-type gene. The repeat units consist of a truncated Mlo gene comprising 3.5 kilobases (kb) of 5′-regulatory sequence plus 1.1 kb of coding sequence. These generate aberrant transcripts that impair the accumulation of both Mlo wild-type transcript and protein. We exploited the meiotic instability of mlo-11 resistance and recovered susceptible revertants in which restoration of Mlo function was accompanied by excision of the repeat array. We infer cis-dependent perturbation of transcription machinery assembly by transcriptional interference in mlo-11 plants as a likely mechanism leading to disease resistance.


BMC Plant Biology | 2009

Characterization of WRKY co-regulatory networks in rice and Arabidopsis

Stefano Berri; Pamela Abbruscato; Odile Faivre-Rampant; Ana C. M. Brasileiro; Irene Fumasoni; Kouji Satoh; Shoshi Kikuchi; Luca Mizzi; Piero Morandini; Mario Enrico Pè; Pietro Piffanelli

BackgroundThe WRKY transcription factor gene family has a very ancient origin and has undergone extensive duplications in the plant kingdom. Several studies have pointed out their involvement in a range of biological processes, revealing that a large number of WRKY genes are transcriptionally regulated under conditions of biotic and/or abiotic stress. To investigate the existence of WRKY co-regulatory networks in plants, a whole gene family WRKYs expression study was carried out in rice (Oryza sativa). This analysis was extended to Arabidopsis thaliana taking advantage of an extensive repository of gene expression data.ResultsThe presented results suggested that 24 members of the rice WRKY gene family (22% of the total) were differentially-regulated in response to at least one of the stress conditions tested. We defined the existence of nine OsWRKY gene clusters comprising both phylogenetically related and unrelated genes that were significantly co-expressed, suggesting that specific sets of WRKY genes might act in co-regulatory networks. This hypothesis was tested by Pearson Correlation Coefficient analysis of the Arabidopsis WRKY gene family in a large set of Affymetrix microarray experiments. AtWRKYs were found to belong to two main co-regulatory networks (COR-A, COR-B) and two smaller ones (COR-C and COR-D), all including genes belonging to distinct phylogenetic groups. The COR-A network contained several AtWRKY genes known to be involved mostly in response to pathogens, whose physical and/or genetic interaction was experimentally proven. We also showed that specific co-regulatory networks were conserved between the two model species by identifying Arabidopsis orthologs of the co-expressed OsWRKY genes.ConclusionIn this work we identified sets of co-expressed WRKY genes in both rice and Arabidopsis that are functionally likely to cooperate in the same signal transduction pathways. We propose that, making use of data from co-regulatory networks, it is possible to highlight novel clusters of plant genes contributing to the same biological processes or signal transduction pathways. Our approach will contribute to unveil gene cooperation pathways not yet identified by classical genetic analyses. This information will open new routes contributing to the dissection of WRKY signal transduction pathways in plants.


The Plant Cell | 2005

Conserved ERAD-like quality control of a plant polytopic membrane protein

Judith Müller; Pietro Piffanelli; Alessandra Devoto; Marco Miklis; Candace Elliott; Bodo Ortmann; Paul Schulze-Lefert; Ralph Panstruga

The endoplasmic reticulum (ER) of eukaryotic cells serves as a checkpoint tightly monitoring protein integrity and channeling malformed proteins into different rescue and degradation routes. The degradation of several ER lumenal and membrane-localized proteins is mediated by ER-associated protein degradation (ERAD) in yeast (Saccharomyces cerevisiae) and mammalian cells. To date, evidence for the existence of ERAD-like mechanisms in plants is indirect and based on heterologous or artificial substrate proteins. Here, we show that an allelic series of single amino acid substitution mutants of the plant-specific barley (Hordeum vulgare) seven-transmembrane domain mildew resistance o (MLO) protein generates substrates for a postinsertional quality control process in plant, yeast, and human cells, suggesting conservation of the underlying mechanism across kingdoms. Specific stabilization of mutant MLO proteins in yeast strains carrying defined defects in protein quality control demonstrates that MLO degradation is mediated by HRD pathway-dependent ERAD. In plants, individual aberrant MLO proteins exhibit markedly reduced half-lives, are polyubiquitinated, and can be stabilized through inhibition of proteasome activity. This and a dependence on homologs of the AAA ATPase CDC48/p97 to eliminate the aberrant variants strongly suggest that MLO proteins are endogenous substrates of an ERAD-related plant quality control mechanism.


Journal of Virology | 2008

A Single Banana Streak Virus Integration Event in the Banana Genome as the Origin of Infectious Endogenous Pararetrovirus

Philippe Gayral; Juan Carlos Noa-Carrazana; Magali Lescot; Fabrice Lheureux; Benham E.L. Lockhart; Takashi Matsumoto; Pietro Piffanelli; Marie Line Iskra-Caruana

ABSTRACT Sequencing of plant nuclear genomes reveals the widespread presence of integrated viral sequences known as endogenous pararetroviruses (EPRVs). Banana is one of the three plant species known to harbor infectious EPRVs. Musa balbisiana carries integrated copies of Banana streak virus (BSV), which are infectious by releasing virions in interspecific hybrids. Here, we analyze the organization of the EPRV of BSV Goldfinger (BSGfV) present in the wild diploid M. balbisiana cv. Pisang Klutuk Wulung (PKW) revealed by the study of Musa bacterial artificial chromosome resources and interspecific genetic cross. cv. PKW contains two similar EPRVs of BSGfV. Genotyping of these integrants and studies of their segregation pattern show an allelic insertion. Despite the fact that integrated BSGfV has undergone extensive rearrangement, both EPRVs contain the full-length viral genome. The high degree of sequence conservation between the integrated and episomal form of the virus indicates a recent integration event; however, only one allele is infectious. Analysis of BSGfV EPRV segregation among an F1 population from an interspecific genetic cross revealed that these EPRV sequences correspond to two alleles originating from a single integration event. We describe here for the first time the full genomic and genetic organization of the two EPRVs of BSGfV present in cv. PKW in response to the challenge facing both scientists and breeders to identify and generate genetic resources free from BSV. We discuss the consequences of this unique host-pathogen interaction in terms of genetic and genomic plant defenses versus strategies of infectious BSGfV EPRVs.


Plant Physiology | 1994

Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene.

Stephen P. Slocombe; Pietro Piffanelli; David J. Fairbairn; Steve Bowra; Polydefkis Hatzopoulos; Miltos Tsiantis; Denis J. Murphy

The nucleotide sequence of a Brassica napus stearoyl-acyl carrier protein desaturase gene (Bn10) is presented. This gene is one member of a family of four closely related genes expressed in oilseed rape. The expression of the promoter of this gene in transgenic tobacco was found to be temporally regulated in the developing seed tissues. However, the promoter was also particularly active in other oleogenic tissues such as the tapetum and pollen grains. This raises the interesting question of whether seed-expressed lipid synthesis genes are regulated by separate tissue-specific determinants or by a single factor common to all oleogenic tissues. Parts of the plants undergoing rapid development such as the components of immature flowers and seedlings also exhibited high levels of promoter activity. These tissues are likely to have an elevated requirement for membrane lipid synthesis. Stearoyl-acyl carrier protein desaturase transcript levels have previously been shown to be temporally regulated in the B. napus embryo (S.P. Slocombe, I. Cummins, R.P. Jarvis, D.J. Murphy [1992] Plant Mol Biol 20: 151–155). Evidence is presented demonstrating the induction of desaturase mRNA by abscisic acid in the embryo.


BMC Genomics | 2008

Insights into the Musa genome: Syntenic relationships to rice and between Musa species

Magali Lescot; Pietro Piffanelli; A. Y. Ciampi; Manuel Ruiz; Guillaume Blanc; Jim Leebens-Mack; Felipe Rodrigues da Silva; C. M. R. Santos; Angélique D'Hont; Olivier Garsmeur; Alberto Duarte Vilarinhos; Hiroyuki Kanamori; Takashi Matsumoto; Catherine M. Ronning; Foo Cheung; Brian J. Haas; Ryan Althoff; Tammy Arbogast; Erin Hine; Georgios J Pappas; Takuji Sasaki; Manoel Souza; Robert N.G. Miller; Jean-Christophe Glaszmann; Christopher D. Town

BackgroundMusa species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of Musa genomic sequence have been conducted. This study compares genomic sequence in two Musa species with orthologous regions in the rice genome.ResultsWe produced 1.4 Mb of Musa sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for Musa-Zingiber (Zingiberaceae, Zingiberales) orthologs and paralogs provide strong evidence for a large-scale duplication event in the Musa lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from M. acuminata and M. balbisiana revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya.ConclusionThese results point to the utility of comparative analyses between distantly-related monocot species such as rice and Musa for improving our understanding of monocot genome evolution. Sequencing the genome of M. acuminata would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated Musa polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic traits for breeding purposes.


Nucleic Acids Research | 2006

OryGenesDB: a database for rice reverse genetics

Gaëtan Droc; Manuel Ruiz; Pierre Larmande; Andy Pereira; Pietro Piffanelli; Jean-Benoit Morel; Anne Dievart; Brigitte Courtois; Emmanuel Guiderdoni; Christophe Périn

Insertional mutant databases containing Flanking Sequence Tags (FSTs) are becoming key resources for plant functional genomics. We have developed OryGenesDB (), a database dedicated to rice reverse genetics. Insertion mutants of rice genes are catalogued by Flanking Sequence Tag (FST) information that can be readily accessed by this database. Our database presently contains 44166 FSTs generated by most of the rice insertional mutagenesis projects. The OryGenesDB genome browser is based on the powerful Generic Genome Browser (GGB) developed in the framework of the Generic Model Organism Project (GMOD). The main interface of our web site displays search and analysis interfaces to look for insertions in any candidate gene of interest. Several starting points can be used to exhaustively retrieve the insertions positions and associated genomic information using blast, keywords or gene name search. The toolbox integrated in our database also includes an ‘anchoring’ option that allows immediate mapping and visualization of up to 50 nucleic acid sequences in the rice Genome Browser of OryGenesDB. As a first step toward plant comparative genomics, we have linked the rice and Arabidopsis whole genome using all the predicted pairs of orthologs by best BLAST mutual hit (BBMH) connectors.

Collaboration


Dive into the Pietro Piffanelli's collaboration.

Top Co-Authors

Avatar

Emmanuel Guiderdoni

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Jean-Christophe Glaszmann

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Sabau

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaëtan Droc

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Y. Ciampi

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Angélique D'Hont

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Brigitte Courtois

International Rice Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge