Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pietro Zoppoli is active.

Publication


Featured researches published by Pietro Zoppoli.


Science | 2012

Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma

Devendra Singh; Joseph Chan; Pietro Zoppoli; Francesco Niola; Ryan J. Sullivan; Angelica Castano; Eric Minwei Liu; Jonathan Reichel; Paola Porrati; Serena Pellegatta; Kunlong Qiu; Zhibo Gao; Michele Ceccarelli; Riccardo Riccardi; Daniel J. Brat; Abhijit Guha; Kenneth D. Aldape; John G. Golfinos; David Zagzag; Tom Mikkelsen; Gaetano Finocchiaro; Anna Lasorella; Raul Rabadan; Antonio Iavarone

Oncogenic TACC-tics Human cancers exhibit many types of genomic rearrangements—including some that juxtapose sequences from two unrelated genes—thereby creating fusion proteins with oncogenic activity. Functional analysis of these fusion genes can provide mechanistic insights into tumorigenesis and potentially lead to effective drugs, as famously illustrated by the BCR-ABL gene in chronic myelogenous leukemia. Singh et al. (p. 1231, published online 26 July) identify and characterize a fusion gene present in 3% of human glioblastomas, a deadly brain cancer. In the resultant fusion protein, the tyrosine kinase region of the fibroblast growth factor receptor (FGFR) is joined to a domain from a transforming acidic coiled-coil (TACC) protein. The TACC-FGFR protein is oncogenic, shows unregulated kinase activity, localizes to the mitotic spindle, and disrupts chromosome segregation. In mice, FGFR inhibitors slowed the growth of tumors driven by the TACC-FGFR gene, suggesting that a subset of glioblastoma patients may benefit from these types of drugs. A fusion gene detected in a small subset of human brain tumors encodes a potentially druggable target. The brain tumor glioblastoma multiforme (GBM) is among the most lethal forms of human cancer. Here, we report that a small subset of GBMs (3.1%; 3 of 97 tumors examined) harbors oncogenic chromosomal translocations that fuse in-frame the tyrosine kinase coding domains of fibroblast growth factor receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, respectively. The FGFR-TACC fusion protein displays oncogenic activity when introduced into astrocytes or stereotactically transduced in the mouse brain. The fusion protein, which localizes to mitotic spindle poles, has constitutive kinase activity and induces mitotic and chromosomal segregation defects and triggers aneuploidy. Inhibition of FGFR kinase corrects the aneuploidy, and oral administration of an FGFR inhibitor prolongs survival of mice harboring intracranial FGFR3-TACC3–initiated glioma. FGFR-TACC fusions could potentially identify a subset of GBM patients who would benefit from targeted FGFR kinase inhibition.


Cell | 2016

Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma

Michele Ceccarelli; Floris P. Barthel; Tathiane Maistro Malta; Thais S. Sabedot; Sofie R. Salama; Bradley A. Murray; Olena Morozova; Yulia Newton; Amie Radenbaugh; Stefano Maria Pagnotta; Samreen Anjum; Jiguang Wang; Ganiraju C. Manyam; Pietro Zoppoli; Shiyun Ling; Arjun A. Rao; Mia Grifford; Andrew D. Cherniack; Hailei Zhang; Laila M. Poisson; Carlos Gilberto Carlotti; Daniela Tirapelli; Arvind Rao; Tom Mikkelsen; Ching C. Lau; W. K. Alfred Yung; Raul Rabadan; Jason T. Huse; Daniel J. Brat; Norman L. Lehman

Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.


Nature Genetics | 2013

The integrated landscape of driver genomic alterations in glioblastoma

Veronique Frattini; Vladimir Trifonov; Joseph Chan; Angelica Castano; Marie Lia; Francesco Abate; Stephen T. Keir; Alan X. Ji; Pietro Zoppoli; Francesco Niola; Carla Danussi; Igor Dolgalev; Paola Porrati; Serena Pellegatta; Adriana Heguy; Gaurav Gupta; David Pisapia; Peter Canoll; Jeffrey N. Bruce; Roger E. McLendon; Hai Yan; Kenneth D. Aldape; Gaetano Finocchiaro; Tom Mikkelsen; Gilbert G. Privé; Darell D. Bigner; Anna Lasorella; Raul Rabadan; Antonio Iavarone

Glioblastoma is one of the most challenging forms of cancer to treat. Here we describe a computational platform that integrates the analysis of copy number variations and somatic mutations and unravels the landscape of in-frame gene fusions in glioblastoma. We found mutations with loss of heterozygosity in LZTR1, encoding an adaptor of CUL3-containing E3 ligase complexes. Mutations and deletions disrupt LZTR1 function, which restrains the self renewal and growth of glioma spheres that retain stem cell features. Loss-of-function mutations in CTNND2 target a neural-specific gene and are associated with the transformation of glioma cells along the very aggressive mesenchymal phenotype. We also report recurrent translocations that fuse the coding sequence of EGFR to several partners, with EGFR-SEPT14 being the most frequent functional gene fusion in human glioblastoma. EGFR-SEPT14 fusions activate STAT3 signaling and confer mitogen independence and sensitivity to EGFR inhibition. These results provide insights into the pathogenesis of glioblastoma and highlight new targets for therapeutic intervention.


BMC Bioinformatics | 2010

TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach

Pietro Zoppoli; Sandro Morganella; Michele Ceccarelli

BackgroundOne of main aims of Molecular Biology is the gain of knowledge about how molecular components interact each other and to understand gene function regulations. Using microarray technology, it is possible to extract measurements of thousands of genes into a single analysis step having a picture of the cell gene expression. Several methods have been developed to infer gene networks from steady-state data, much less literature is produced about time-course data, so the development of algorithms to infer gene networks from time-series measurements is a current challenge into bioinformatics research area. In order to detect dependencies between genes at different time delays, we propose an approach to infer gene regulatory networks from time-series measurements starting from a well known algorithm based on information theory.ResultsIn this paper we show how the ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) algorithm can be used for gene regulatory network inference in the case of time-course expression profiles. The resulting method is called TimeDelay-ARACNE. It just tries to extract dependencies between two genes at different time delays, providing a measure of these dependencies in terms of mutual information. The basic idea of the proposed algorithm is to detect time-delayed dependencies between the expression profiles by assuming as underlying probabilistic model a stationary Markov Random Field. Less informative dependencies are filtered out using an auto calculated threshold, retaining most reliable connections. TimeDelay-ARACNE can infer small local networks of time regulated gene-gene interactions detecting their versus and also discovering cyclic interactions also when only a medium-small number of measurements are available. We test the algorithm both on synthetic networks and on microarray expression profiles. Microarray measurements concern S. cerevisiae cell cycle, E. coli SOS pathways and a recently developed network for in vivo assessment of reverse engineering algorithms. Our results are compared with ARACNE itself and with the ones of two previously published algorithms: Dynamic Bayesian Networks and systems of ODEs, showing that TimeDelay-ARACNE has good accuracy, recall and F-score for the network reconstruction task.ConclusionsHere we report the adaptation of the ARACNE algorithm to infer gene regulatory networks from time-course data, so that, the resulting network is represented as a directed graph. The proposed algorithm is expected to be useful in reconstruction of small biological directed networks from time course data.


Oncogene | 2011

Upregulation of miR-21 by Ras in vivo and its role in tumor growth

Daniela Frezzetti; M De Menna; Pietro Zoppoli; C Guerra; A Ferraro; Anna Maria Bello; P. De Luca; C Calabrese; A Fusco; Michele Ceccarelli; Massimo Zollo; M Barbacid; R Di Lauro; G De Vita

miR-21 is a microRNA (miRNA) frequently overexpressed in human cancers. Here we show that miR-21 is upregulated both in vitro and in vivo by oncogenic Ras, thus linking this miRNA to one of the most frequently activated oncogenes in human cancers. Ras regulation of miR-21 occurs with a delayed kinetic and requires at least two Ras downstream pathways. A screen of human thyroid cancers and non-small-cell lung cancers for the expression of miR-21 reveals that it is overexpressed mainly in anaplastic thyroid carcinomas, the most aggressive form of thyroid cancer, whereas in lung its overexpression appears to be inversely correlated with tumor progression. We also show that a LNA directed against miR-21 slows down tumor growth in mice. Consistently, a search for mRNAs downregulated by miR-21 shows an enrichment for mRNAs encoding cell cycle checkpoints regulators, suggesting an important role for miR-21 in oncogenic Ras-induced cell proliferation.


Clinical Cancer Research | 2015

Detection, Characterization, and Inhibition of FGFR–TACC Fusions in IDH Wild-type Glioma

Anna Luisa Di Stefano; Alessandra Fucci; Veronique Frattini; Marianne Labussière; Karima Mokhtari; Pietro Zoppoli; Yannick Marie; Aurelie Bruno; Blandine Boisselier; Marine Giry; Julien Savatovsky; Mehdi Touat; Hayat Belaid; Aurélie Kamoun; Ahmed Idbaih; Caroline Houillier; Feng R. Luo; Josep Tabernero; Marica Eoli; Rosina Paterra; Stephen Yip; Kevin Petrecca; Jennifer A. Chan; Gaetano Finocchiaro; Anna Lasorella; Marc Sanson; Antonio Iavarone

Purpose: Oncogenic fusions consisting of fibroblast growth factor receptor (FGFR) and TACC are present in a subgroup of glioblastoma (GBM) and other human cancers and have been proposed as new therapeutic targets. We analyzed frequency and molecular features of FGFR–TACC fusions and explored the therapeutic efficacy of inhibiting FGFR kinase in GBM and grade II and III glioma. Experimental Design: Overall, 795 gliomas (584 GBM, 85 grades II and III with wild-type and 126 with IDH1/2 mutation) were screened for FGFR–TACC breakpoints and associated molecular profile. We also analyzed expression of the FGFR3 and TACC3 components of the fusions. The effects of the specific FGFR inhibitor JNJ-42756493 for FGFR3–TACC3–positive glioma were determined in preclinical experiments. Two patients with advanced FGFR3–TACC3–positive GBM received JNJ-42756493 and were assessed for therapeutic response. Results: Three of 85 IDH1/2 wild-type (3.5%) but none of 126 IDH1/2-mutant grade II and III gliomas harbored FGFR3–TACC3 fusions. FGFR–TACC rearrangements were present in 17 of 584 GBM (2.9%). FGFR3–TACC3 fusions were associated with strong and homogeneous FGFR3 immunostaining. They are mutually exclusive with IDH1/2 mutations and EGFR amplification, whereas they co-occur with CDK4 amplification. JNJ-42756493 inhibited growth of glioma cells harboring FGFR3–TACC3 in vitro and in vivo. The two patients with FGFR3–TACC3 rearrangements who received JNJ-42756493 manifested clinical improvement with stable disease and minor response, respectively. Conclusions: RT-PCR sequencing is a sensitive and specific method to identify FGFR–TACC–positive patients. FGFR3–TACC3 fusions are associated with uniform intratumor expression of the fusion protein. The clinical response observed in the FGFR3–TACC3–positive patients treated with an FGFR inhibitor supports clinical studies of FGFR inhibition in FGFR–TACC–positive patients. Clin Cancer Res; 21(14); 3307–17. ©2015 AACR. See related commentary by Ahluwalia and Rich, p. 3105


PLOS ONE | 2012

Signaling Networks Associated with AKT Activation in Non-Small Cell Lung Cancer (NSCLC): New Insights on the Role of Phosphatydil-Inositol-3 kinase

Marianna Scrima; Carmela De Marco; Fernanda Fabiani; Renato Franco; Giuseppe Pirozzi; Gaetano Rocco; Maria Ravo; Alessandro Weisz; Pietro Zoppoli; Michele Ceccarelli; Gerardo Botti; Donatella Malanga; Giuseppe Viglietto

Aberrant activation of PI3K/AKT signalling represents one of the most common molecular alterations in lung cancer, though the relative contribution of the single components of the cascade to the NSCLC development is still poorly defined. In this manuscript we have investigated the relationship between expression and genetic alterations of the components of the PI3K/AKT pathway [KRAS, the catalytic subunit of PI3K (p110α), PTEN, AKT1 and AKT2] and the activation of AKT in 107 surgically resected NSCLCs and have analyzed the existing relationships with clinico-pathologic features. Expression analysis was performed by immunohistochemistry on Tissue Micro Arrays (TMA); mutation analysis was performed by DNA sequencing; copy number variation was determined by FISH. We report that activation of PI3K/AKT pathway in Italian NSCLC patients is associated with high grade (G3–G4 compared with G1–G2; n = 83; p<0.05) and more advanced disease (TNM stage III vs. stages I and II; n = 26; p<0.05). In addition, we found that PTEN loss (41/104, 39%) and the overexpression of p110α (27/92, 29%) represent the most frequent aberration observed in NSCLCs. Less frequent molecular lesions comprised the overexpression of AKT2 (18/83, 22%) or AKT1 (17/96, 18%), and KRAS mutation (7/63, 11%). Our results indicate that, among all genes, only p110α overexpression was significantly associated to AKT activation in NSCLCs (p = 0.02). Manipulation of p110α expression in lung cancer cells carrying an active PI3K allele (NCI-H460) efficiently reduced proliferation of NSCLC cells in vitro and tumour growth in vivo. Finally, RNA profiling of lung epithelial cells (BEAS-2B) expressing a mutant allele of PIK3 (E545K) identified a network of transcription factors such as MYC, FOS and HMGA1, not previously recognised to be associated with aberrant PI3K signalling in lung cancer.


Cancer Cell | 2014

Cancer-Selective Targeting of the Nf-ΚB Survival Pathway With Gadd45Β/Mkk7 Inhibitors

Laura Tornatore; Annamaria Sandomenico; Domenico Raimondo; Caroline M. R. Low; Alberto Rocci; Cathy Tralau-Stewart; Daria Capece; Daniel D’Andrea; Marco Bua; Eileen Boyle; Pietro Zoppoli; Albert Jaxa-Chamiec; Anil K. Thotakura; Julian Dyson; Brian A. Walker; Antonio Leonardi; Angela Chambery; Christoph Driessen; Pieter Sonneveld; Gareth J. Morgan; Antonio Palumbo; Anna Tramontano; Amin Rahemtulla; Menotti Ruvo; Guido Franzoso

Summary Constitutive NF-κB signaling promotes survival in multiple myeloma (MM) and other cancers; however, current NF-κB-targeting strategies lack cancer cell specificity. Here, we identify the interaction between the NF-κB-regulated antiapoptotic factor GADD45β and the JNK kinase MKK7 as a therapeutic target in MM. Using a drug-discovery strategy, we developed DTP3, a D-tripeptide, which disrupts the GADD45β/MKK7 complex, kills MM cells effectively, and, importantly, lacks toxicity to normal cells. DTP3 has similar anticancer potency to the clinical standard, bortezomib, but more than 100-fold higher cancer cell specificity in vitro. Notably, DTP3 ablates myeloma xenografts in mice with no apparent side effects at the effective doses. Hence, cancer-selective targeting of the NF-κB pathway is possible and, at least for myeloma patients, promises a profound benefit.


Journal of Clinical Investigation | 2013

Mesenchymal high-grade glioma is maintained by the ID-RAP1 axis

Francesco Niola; Xudong Zhao; Devendra Singh; Ryan J. Sullivan; Angelica Castano; Antonio Verrico; Pietro Zoppoli; Dinorah Friedmann-Morvinski; Erik P. Sulman; Lindy Barrett; Yuan Zhuang; Inder M. Verma; Robert Benezra; Kenneth D. Aldape; Antonio Iavarone; Anna Lasorella

High-grade gliomas (HGGs) are incurable brain tumors that are characterized by the presence of glioma-initiating cells (GICs). GICs are essential to tumor aggressiveness and retain the capacity for self-renewal and multilineage differentiation as long as they reside in the perivascular niche. ID proteins are master regulators of stemness and anchorage to the extracellular niche microenvironment, suggesting that they may play a role in maintaining GICs. Here, we modeled the probable therapeutic impact of ID inactivation in HGG by selective ablation of Id in tumor cells and after tumor initiation in a new mouse model of human mesenchymal HGG. Deletion of 3 Id genes induced rapid release of GICs from the perivascular niche, followed by tumor regression. GIC displacement was mediated by derepression of Rap1gap and subsequent inhibition of RAP1, a master regulator of cell adhesion. We identified a signature module of 5 genes in the ID pathway, including RAP1GAP, which segregated 2 subgroups of glioma patients with markedly different clinical outcomes. The model-informed survival analysis together with genetic and functional studies establish that ID activity is required for the maintenance of mesenchymal HGG and suggest that pharmacological inactivation of ID proteins could serve as a therapeutic strategy.


PLOS ONE | 2011

Spheres Derived from Lung Adenocarcinoma Pleural Effusions: Molecular Characterization and Tumor Engraftment

Rita Mancini; Enrico Giarnieri; Claudia De Vitis; Donatella Malanga; Giuseppe Roscilli; Alessia Noto; Emanuele Marra; Carmelo Laudanna; Pietro Zoppoli; Pasquale De Luca; Andrea Affuso; Luigi Ruco; Arianna Di Napoli; Giuseppe Mesiti; Luigi Aurisicchio; Alberto Ricci; Salvatore Mariotta; Lara Pisani; Claudio Andreetti; Giuseppe Viglietto; Erino A. Rendina; Maria Rosaria Giovagnoli; Gennaro Ciliberto

Malignant pleural effusions (MPEs) could represent an excellent source to culture a wide variety of cancer cells from different donors. In this study, we set up culture conditions for cancer cells deriving from MPEs of several patients affected by the most frequent form of lung cancer, namely the subset of non small cell lung cancers (NSCLC) classified as Lung Adenocarcinomas (AdenoCa) which account for approximately 40% of lung cancer cases. AdenoCa malignant pleural effusions gave rise to in vitro cultures both in adherent and/or in spheroid conditions in almost all cases analyzed. We characterized in greater detail two samples which showed the most efficient propagation in vitro. In these samples we also compared gene profiles of spheroid vs adherent cultures and identified a set of differentially expressed genes. Finally we achieved efficient tumor engraftment in recipient NOD/SCID mice, also upon inoculation of small number of cells, thus suggesting indirectly the presence of tumor initiating cells.

Collaboration


Dive into the Pietro Zoppoli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pasquale De Luca

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Anna Lasorella

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Niola

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth D. Aldape

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge