Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pilar Cubas is active.

Publication


Featured researches published by Pilar Cubas.


PLOS Biology | 2008

Control of Jasmonate Biosynthesis and Senescence by miR319 Targets

Carla Schommer; Javier F. Palatnik; Pooja Aggarwal; Aurore Chételat; Pilar Cubas; Edward E. Farmer; Utpal Nath; Detlef Weigel

Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate.


The Plant Cell | 2007

Arabidopsis BRANCHED1 Acts as an Integrator of Branching Signals within Axillary Buds

José Antonio Aguilar-Martínez; César Poza-Carrión; Pilar Cubas

Shoot branching patterns depend on a key developmental decision: whether axillary buds grow out to give a branch or whether they remain dormant in the axils of leaves. This decision is controlled by endogenous and environmental stimuli mediated by hormonal signals. Although genes involved in the long-distance signaling of this process have been identified, the genes responding inside the buds to cause growth arrest remained unknown in Arabidopsis thaliana. Here, we describe an Arabidopsis gene encoding a TCP transcription factor closely related to teosinte branched1 (tb1) from maize (Zea mays), BRANCHED1 (BRC1), which represents a key point at which signals controlling branching are integrated within axillary buds. BRC1 is expressed in developing buds, where it arrests bud development. BRC1 downregulation leads to branch outgrowth. BRC1 responds to developmental and environmental stimuli controlling branching and mediates the response to these stimuli. Mutant and expression analyses suggest that BRC1 is downstream of the MORE AXILLARY GROWTH pathway and that it is required for auxin-induced apical dominance. Therefore, BRC1 acts inside the buds as an integrator of signals controlling bud outgrowth and translates them into a response of cell growth arrest. The conservation of BRC1/tb1 function among distantly related angiosperm species suggests that a single ancestral mechanism of branching control integration evolved before the radiation of flowering plants.


Trends in Plant Science | 2010

TCP genes: a family snapshot ten years later.

Mar Martín-Trillo; Pilar Cubas

TCP genes encode plant-specific transcription factors with a bHLH motif that allows DNA binding and protein-protein interactions. The TCP gene family has five members in the lycophytes and >20 members in the eudicots. Gene duplication and diversification has generated two clades (class I and II) with slightly different TCP domains. Here, we summarize our current knowledge of the evolution of this family, their regulation, the biochemical activity of their proteins and the biological function of some members, in particular, in the control of cell proliferation in developing tissues. Increasing knowledge of the functions of TCP genes should enable their use as tools to modulate plant growth patterns and to generate novel morphologies in species of agronomical interest.


Science | 2008

Regulatory genes control a key morphological and ecological trait transferred between species

Minsung Kim; Min Long Cui; Pilar Cubas; Amanda Gillies; Karen Lee; Mark A. Chapman; Richard J. Abbott; Enrico Coen

Hybridization between species can lead to introgression of genes from one species to another, providing a potential mechanism for preserving and recombining key traits during evolution. To determine the molecular basis of such transfers, we analyzed a natural polymorphism for flower-head development in Senecio. We show that the polymorphism arose by introgression of a cluster of regulatory genes, the RAY locus, from the diploid species S. squalidus into the tetraploid S. vulgaris. The RAY genes are expressed in the peripheral regions of the inflorescence meristem, where they promote flower asymmetry and lead to an increase in the rate of outcrossing. Our results highlight how key morphological and ecological traits controlled by regulatory genes may be gained, lost, and regained during evolution.


Current Biology | 2001

Ancient asymmetries in the evolution of flowers

Pilar Cubas; Enrico Coen; José Miguel Martínez Zapater

Dorsoventral asymmetry in flowers is thought to have evolved many times independently as a specialized adaptation to animal pollinators. To understand how such a complex trait could have arisen repeatedly, we have compared the expression of a gene controlling dorsoventral asymmetry in Antirrhinum with its counterpart in Arabidopsis, a distantly related species with radially symmetrical flowers. We found that the Arabidopsis gene is expressed asymmetrically in floral meristems, even though they are destined to form symmetrical flowers. This suggests that, although the flowers of the common ancestor were probably radially symmetrical, they may have had an incipient asymmetry, evident at the level of early gene activity, which could have been recruited many times during evolution to generate asymmetric flowers.


Plant Physiology | 2002

VFL, the Grapevine FLORICAULA/LEAFY Ortholog, Is Expressed in Meristematic Regions Independently of Their Fate

María José Carmona; Pilar Cubas; José M. Martínez-Zapater

The flowering process in grapevine (Vitis vinifera) takes place in buds and extends for two consecutive growing seasons. To understand the genetic and molecular mechanisms underlying this process, we have characterized grapevine bud development, cloned the grapevineFLORICAULA/LEAFY (FLO/LFY) ortholog, VFL, and analyzed its expression patterns during vegetative and reproductive development. Flowering induction takes place during the first season. Upon induction, the shoot apical meristem begins to produce lateral meristems that will give rise to either inflorescences or tendrils. During the second season, after a winter dormancy period, buds reactivate and inflorescence meristems give rise to flower meristems. VFL is expressed in lateral meristems that give rise to inflorescence and flower meristems, consistent with a role in reproductive development. Furthermore,VFL is also detected in other meristematic regions such as the vegetative shoot apical meristem and the lateral meristems that will give rise to tendrils. VFL is also expressed in leaf primordia and in growing leaf margins until later stages of development. Accumulation of VFL transcripts in cell-proliferating regions suggests a role for VFL not only in flower meristem specification, but also in the maintenance of indeterminacy before the differentiation of derivatives of the apical meristem: flowers, leaves, or tendrils.


Plant Physiology | 2004

Floral Meristem Identity Genes Are Expressed during Tendril Development in Grapevine

Myriam Calonje; Pilar Cubas; José M. Martínez-Zapater; María José Carmona

To study the early steps of flower initiation and development in grapevine (Vitis vinifera), we have isolated two MADS-box genes, VFUL-L and VAP1, the putative FUL-like and AP1 grapevine orthologs, and analyzed their expression patterns during vegetative and reproductive development. Both genes are expressed in lateral meristems that, in grapevine, can give rise to either inflorescences or tendrils. They are also coexpressed in inflorescence and flower meristems. During flower development, VFUL-L transcripts are restricted to the central part of young flower meristems and, later, to the prospective carpel-forming region, which is consistent with a role of this gene in floral transition and carpel and fruit development. Expression pattern of VAP1 suggests that it may play a role in flowering transition and flower development. However, its lack of expression in sepal primordia, does not support its role as an A-function gene in grapevine. Neither VFUL-L nor VAP1 expression was detected in vegetative organs such as leaves or roots. In contrast, they are expressed throughout tendril development. Transcription of both genes in tendrils of very young plants that have not undergone flowering transition indicates that this expression is independent of the flowering process. These unique expression patterns of genes typically involved in reproductive development have implications on our understanding of flower induction and initiation in grapevine, on the origin of grapevine tendrils and on the functional roles of AP1-and FUL-like genes in plant development. These results also provide molecular support to the hypothesis that Vitis tendrils are modified reproductive organs adapted to climb.


The Plant Cell | 2014

Strigolactone Promotes Degradation of DWARF14, an α/β Hydrolase Essential for Strigolactone Signaling in Arabidopsis

Florian Chevalier; Kaisa Nieminen; Juan C. Sánchez-Ferrero; María Luisa Rodríguez; Mónica Chagoyen; Christian S. Hardtke; Pilar Cubas

A mechanism was identified by which degradation of D14, the putative receptor of the plant hormone strigolactone, is promoted by this hormone. This mechanism, which is mediated by protein degradation via the proteasome machinery and requires the activity of the F-box protein MAX2, should cause a substantial drop in strigolactone perception, thereby limiting hormone signaling duration and intensity. Strigolactones (SLs) are phytohormones that play a central role in regulating shoot branching. SL perception and signaling involves the F-box protein MAX2 and the hydrolase DWARF14 (D14), proposed to act as an SL receptor. We used strong loss-of-function alleles of the Arabidopsis thaliana D14 gene to characterize D14 function from early axillary bud development through to lateral shoot outgrowth and demonstrated a role of this gene in the control of flowering time. Our data show that D14 distribution in vivo overlaps with that reported for MAX2 at both the tissue and subcellular levels, allowing physical interactions between these proteins. Our grafting studies indicate that neither D14 mRNA nor the protein move over a long range upwards in the plant. Like MAX2, D14 is required locally in the aerial part of the plant to suppress shoot branching. We also identified a mechanism of SL-induced, MAX2-dependent proteasome-mediated degradation of D14. This negative feedback loop would cause a substantial drop in SL perception, which would effectively limit SL signaling duration and intensity.


The Plant Cell | 2013

BRANCHED1 Promotes Axillary Bud Dormancy in Response to Shade in Arabidopsis

Eduardo González-Grandío; César Poza-Carrión; Carlos Oscar; S. Sorzano; Pilar Cubas

Arabidopsis BRANCHED1 is required for branch suppression in response to shade. Transcriptional profiling of shade-treated wild-type and brc1 axillary buds revealed a group of ABA response genes and a network of cell cycle– and ribosome-related genes whose mRNA levels are dependent on BRC1 function. These genes may play a key role in the growth-to-dormancy transition in buds. Plants interpret a decrease in the red to far-red light ratio (R:FR) as a sign of impending shading by neighboring vegetation. This triggers a set of developmental responses known as shade avoidance syndrome. One of these responses is reduced branching through suppression of axillary bud outgrowth. The Arabidopsis thaliana gene BRANCHED1 (BRC1), expressed in axillary buds, is required for branch suppression in response to shade. Unlike wild-type plants, brc1 mutants develop several branches after a shade treatment. BRC1 transcription is positively regulated 4 h after exposure to low R:FR. Consistently, BRC1 is negatively regulated by phytochrome B. Transcriptional profiling of wild-type and brc1 buds of plants treated with simulated shade has revealed groups of genes whose mRNA levels are dependent on BRC1, among them a set of upregulated abscisic acid response genes and two networks of cell cycle– and ribosome-related downregulated genes. The downregulated genes have promoters enriched in TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) binding sites, suggesting that they could be transcriptionally regulated by TCP factors. Some of these genes respond to BRC1 in seedlings and buds, supporting their close relationship with BRC1 activity. This response may allow the rapid adaptation of plants to fluctuations in the ratio of R:FR light.


The International Journal of Developmental Biology | 2009

Chromatin remodeling in plant development

José A. Jarillo; Manuel Piñeiro; Pilar Cubas; José M. Martínez-Zapater

Plant development results from specific patterns of gene expression that are tightly regulated in a spatio-temporal manner. Chromatin remodeling plays a central role in establishing these expression patterns and maintaining epigenetic transcriptional states through successive rounds of mitosis that take place within a cell lineage. Plant epigenetic switches occur not only at the embryo stage, but also during postembryonic developmental transitions, suggesting that chromatin remodeling activities in plants can provide a higher degree of regulatory flexibility which probably underlies their developmental plasticity. Here, we highlight recent progress in the understanding of plant chromatin dynamic organization, facilitating the activation or repression of specific sets of genes involved in different developmental programs and integrating them with the response to environmental signals. Chromatin conformation controls gene expression both in actively dividing undifferentiated cells and in those already fate-determined. In this context, we first describe chromatin reorganization activities required to maintain meristem function stable through DNA replication and cell division. Organ initiation at the apex, with emphasis on reproductive development, is next discussed to uncover the chromatin events involved in the establishment and maintenance of expression patterns associated with differentiating cells; this is illustrated with the complex epigenetic regulation of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Finally, we discuss the involvement of chromatin remodeling in plant responses to environmental cues and to different types of stress conditions.

Collaboration


Dive into the Pilar Cubas's collaboration.

Top Co-Authors

Avatar

Eduardo González-Grandío

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Nicolas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Tarancón

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

César Poza-Carrión

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María José Carmona

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge