Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pilar Sepúlveda is active.

Publication


Featured researches published by Pilar Sepúlveda.


Stem Cells | 2008

Human Dental Pulp Stem Cells Improve Left Ventricular Function, Induce Angiogenesis, and Reduce Infarct Size in Rats with Acute Myocardial Infarction

Carolina Gandía; Ana Armiñán; Jose Manuel Garcia-Verdugo; Elisa Lledó; Amparo Ruiz; M Dolores Miñana; Jorge Sanchez‐Torrijos; Rafael Payá; Francisco Carbonell-Uberos; Mauro Llop; José Anastasio Montero; Pilar Sepúlveda

Human dental pulp contains precursor cells termed dental pulp stem cells (DPSC) that show self‐renewal and multilineage differentiation and also secrete multiple proangiogenic and antiapoptotic factors. To examine whether these cells could have therapeutic potential in the repair of myocardial infarction (MI), DPSC were infected with a retrovirus encoding the green fluorescent protein (GFP) and expanded ex vivo. Seven days after induction of myocardial infarction by coronary artery ligation, 1.5 × 106 GFP‐DPSC were injected intramyocardially in nude rats. At 4 weeks, cell‐treated animals showed an improvement in cardiac function, observed by percentage changes in anterior wall thickening left ventricular fractional area change, in parallel with a reduction in infarct size. No histologic evidence was seen of GFP+ endothelial cells, smooth muscle cells, or cardiac muscle cells within the infarct. However, angiogenesis was increased relative to control‐treated animals. Taken together, these data suggest that DPSC could provide a novel alternative cell population for cardiac repair, at least in the setting of acute MI.


Journal of Molecular and Cellular Cardiology | 2010

Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents.

Antoni Bayes-Genis; Carolina Soler-Botija; Jordi Farré; Pilar Sepúlveda; Angel Raya; Santiago Roura; Cristina Prat-Vidal; Carolina Gálvez-Montón; José Anastasio Montero; Dirk Büscher; Juan Carlos Izpisua Belmonte

Myocardial infarction caused by vascular occlusion results in the formation of nonfunctional fibrous tissue. Cumulative evidence indicates that cell therapy modestly improves cardiac function; thus, novel cell sources with the potential to repair injured tissue are actively sought. Here, we identify and characterize a cell population of cardiac adipose tissue-derived progenitor cells (ATDPCs) from biopsies of human adult cardiac adipose tissue. Cardiac ATDPCs express a mesenchymal stem cell-like marker profile (strongly positive for CD105, CD44, CD166, CD29 and CD90) and have immunosuppressive capacity. Moreover, cardiac ATDPCs have an inherent cardiac-like phenotype and were able to express de novo myocardial and endothelial markers in vitro but not to differentiate into adipocytes. In addition, when cardiac ATDPCs were transplanted into injured myocardium in mouse and rat models of myocardial infarction, the engrafted cells expressed cardiac (troponin I, sarcomeric α-actinin) and endothelial (CD31) markers, vascularization increased, and infarct size was reduced in mice and rats. Moreover, significant differences between control and cell-treated groups were found in fractional shortening and ejection fraction, and the anterior wall remained significantly thicker 30days after cardiac delivery of ATDPCs. Finally, cardiac ATDPCs secreted proangiogenic factors under in vitro hypoxic conditions, suggesting a paracrine effect to promote local vascularization. Our results indicate that the population of progenitor cells isolated from human cardiac adipose tissue (cardiac ATDPCs) may be valid candidates for future use in cell therapy to regenerate injured myocardium.


Stem Cells | 2009

Hypoxia Promotes Efficient Differentiation of Human Embryonic Stem Cells to Functional Endothelium

Sonia Prado-López; Ana Conesa; Ana Armiñán; Magdalena Martínez-Losa; Carmen Escobedo-Lucea; Carolina Gandía; Sonia Tarazona; Dario Melguizo; David Blesa; David Montaner; Silvia M. Sanz-González; Pilar Sepúlveda; Stefan Götz; José-Enrique O'Connor; Rubén Moreno; Joaquín Dopazo; Deborah J. Burks; Miodrag Stojkovic

Early development of mammalian embryos occurs in an environment of relative hypoxia. Nevertheless, human embryonic stem cells (hESC), which are derived from the inner cell mass of blastocyst, are routinely cultured under the same atmospheric conditions (21% O2) as somatic cells. We hypothesized that O2 levels modulate gene expression and differentiation potential of hESC, and thus, we performed gene profiling of hESC maintained under normoxic or hypoxic (1% or 5% O2) conditions. Our analysis revealed that hypoxia downregulates expression of pluripotency markers in hESC but increases significantly the expression of genes associated with angio‐ and vasculogenesis including vascular endothelial growth factor and angiopoitein‐like proteins. Consequently, we were able to efficiently differentiate hESC to functional endothelial cells (EC) by varying O2 levels; after 24 hours at 5% O2, more than 50% of cells were CD34+. Transplantation of resulting endothelial‐like cells improved both systolic function and fractional shortening in a rodent model of myocardial infarction. Moreover, analysis of the infarcted zone revealed that transplanted EC reduced the area of fibrous scar tissue by 50%. Thus, use of hypoxic conditions to specify the endothelial lineage suggests a novel strategy for cellular therapies aimed at repair of damaged vasculature in pathologies such as cerebral ischemia and myocardial infarction. STEM CELLS 2010;28:407–418


Infection and Immunity | 2000

DNA-Based Immunization with Trypanosoma cruzi Complement Regulatory Protein Elicits Complement Lytic Antibodies and Confers Protection against Trypanosoma cruzi Infection

Pilar Sepúlveda; Mireille Hontebeyrie; Pascal Liegeard; Alexia Mascilli; Karen A. Norris

ABSTRACT A complement regulatory protein (CRP) of Trypanosoma cruzi was evaluated as a vaccine candidate in a murine model of experimental T. cruzi infection. Recombinant CRP derived from an Escherichia coli expression system and a plasmid encoding the full-length crp structural gene under the control of a eukaryotic promoter were used to immunize BALB/c mice. Immunization with both protein and DNA vaccines resulted in a Th1-type T-cell response, comparable antibody titers, and similar immunoglobulin G isotype profiles. Only mice immunized with the crp DNA plasmid produced antibodies capable of lysing the parasites in the presence of complement and were protected against a lethal challenge with T. cruzi trypomastigotes. These results demonstrate the superiority of DNA immunization over protein immunization with the recombinant CRP. The work also supports the further investigation of CRP as a component of a multigene, anti-T. cruzi DNA vaccine.


Stem Cell Reviews and Reports | 2012

IL1β Induces Mesenchymal Stem Cells Migration and Leucocyte Chemotaxis Through NF-κB

Rubén Carrero; Inmaculada Cerrada; Elisa Lledó; Joaquín Dopazo; Francisco García-García; Mari-Paz Rubio; César Trigueros; Akaitz Dorronsoro; Amparo Ruiz-Sauri; José Anastasio Montero; Pilar Sepúlveda

Mesenchymal stem cells are often transplanted into inflammatory environments where they are able to survive and modulate host immune responses through a poorly understood mechanism. In this paper we analyzed the responses of MSC to IL-1β: a representative inflammatory mediator. Microarray analysis of MSC treated with IL-1β revealed that this cytokine activateds a set of genes related to biological processes such as cell survival, cell migration, cell adhesion, chemokine production, induction of angiogenesis and modulation of the immune response. Further more detailed analysis by real-time PCR and functional assays revealed that IL-1β mainly increaseds the production of chemokines such as CCL5, CCL20, CXCL1, CXCL3, CXCL5, CXCL6, CXCL10, CXCL11 and CX3CL1, interleukins IL-6, IL-8, IL23A, IL32, Toll-like receptors TLR2, TLR4, CLDN1, metalloproteins MMP1 and MMP3, growth factors CSF2 and TNF-α, together with adhesion molecules ICAM1 and ICAM4. Functional analysis of MSC proliferation, migration and adhesion to extracellular matrix components revealed that IL-1β did not affect proliferation but also served to induce the secretion of trophic factors and adhesion to ECM components such as collagen and laminin. IL-1β treatment enhanced the ability of MSC to recruit monocytes and granulocytes in vitro. Blockade of NF-κβ transcription factor activation with IκB kinase beta (IKKβ) shRNA impaired MSC migration, adhesion and leucocyte recruitment, induced by IL-1β demonstrating that NF-κB pathway is an important downstream regulator of these responses. These findings are relevant to understanding the biological responses of MSC to inflammatory environments.


Journal of the American College of Cardiology | 2010

Mesenchymal Stem Cells Provide Better Results Than Hematopoietic Precursors for the Treatment of Myocardial Infarction

Ana Armiñán; Carolina Gandía; J. Manuel García-Verdugo; Elisa Lledó; César Trigueros; Amparo Ruiz-Sauri; María Dolores Miñana; Pilar Solves; Rafael Payá; J. Anastasio Montero; Pilar Sepúlveda

OBJECTIVES The purpose of this study was to compare the ability of human CD34(+) hematopoietic stem cells and bone marrow mesenchymal stem cells (MSC) to treat myocardial infarction (MI) in a model of permanent left descendent coronary artery (LDA) ligation in nude rats. BACKGROUND Transplantation of human CD34(+) cells and MSC has been proved to be effective in treating MI, but no comparative studies have been performed to elucidate which treatment prevents left ventricular (LV) remodelling more efficiently. METHODS Human bone marrow MSC or freshly isolated CD34(+) cells from umbilical cord blood were injected intramyocardially in infarcted nude rats. Cardiac function was analyzed by echocardiography. Ventricular remodelling was evaluated by tissue histology and electron microscopy, and neo-formed vessels were quantified by immunohistochemistry. Chronic local inflammatory infiltrates were evaluated in LV wall by hematoxylin-eosin staining. Apoptosis of infarcted tissue was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. RESULTS Both cell types induced an improvement in LV cardiac function and increased tissue cell proliferation in myocardial tissue and neoangiogenesis. However, MSC were more effective for the reduction of infarct size and prevention of ventricular remodelling. Scar tissue was 17.48 +/- 1.29% in the CD34 group and 10.36 +/- 1.07% in the MSC group (p < 0.001 in MSC vs. CD34). Moreover, unlike MSC, CD34(+)-treated animals showed local inflammatory infiltrates in LV wall that persisted 4 weeks after transplantation. CONCLUSIONS Mesenchymal stem cells might be more effective than CD34(+) cells for the healing of the infarct. This study contributes to elucidate the mechanisms by which these cell types operate in the course of MI treatment.


Journal of Medicinal Chemistry | 2008

Modulation of Cellular Apoptosis with Apoptotic Protease-Activating Factor 1 (Apaf-1) Inhibitors

Laura Mondragón; Mar Orzáez; Glòria Sanclimens; Alejandra Moure; Ana Armiñán; Pilar Sepúlveda; Angel Messeguer; María J. Vicent; Enrique Pérez-Payá

The programmed cell death or apoptosis plays both physiological and pathological roles in biology. Anomalous activation of apoptosis has been associated with malignancies. The intrinsic mitochondrial pathway of apoptosis activation occurs through a multiprotein complex named the apoptosome. We have discovered molecules that bind to a central protein component of the apoptosome, Apaf-1, and inhibits its activity. These new first-in-class apoptosome inhibitors have been further improved by modifications directed to enhance their cellular penetration to yield compounds that decrease cell death, both in cellular models of apoptosis and in neonatal rat cardiomyocytes under hypoxic conditions.


Stem cell reports | 2014

miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

Alberto Izarra; Isabel Moscoso; Elif Levent; Susana Cañón; Inmaculada Cerrada; Antonio Díez-Juan; Vanessa Blanca; Iván-J. Núñez-Gil; Iñigo Valiente; Amparo Ruiz-Sauri; Pilar Sepúlveda; Malte Tiburcy; Wh Zimmermann; Antonio Bernad

Summary miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue.


Stem Cells and Development | 2013

Hypoxia-inducible factor 1 alpha contributes to cardiac healing in mesenchymal stem cells-mediated cardiac repair

Inmaculada Cerrada; Amparo Ruiz-Sauri; Rubén Carrero; César Trigueros; Akaitz Dorronsoro; Jose Marı́a Sanchez-Puelles; Antonio Díez-Juan; José Anastasio Montero; Pilar Sepúlveda

Mesenchymal stem cells (MSC) are effective in treating myocardial infarction (MI) and previous reports demonstrated that hypoxia improves MSC self-renewal and therapeutics. Considering that hypoxia-inducible factor-1 alpha (HIF-1α) is a master regulator of the adaptative response to hypoxia, we hypothesized that HIF-1α overexpression in MSC could mimic some of the mechanisms triggered by hypoxia and increase their therapeutic potential without hypoxia stimulation. Transduction of MSC with HIF-1α lentivirus vectors (MSC-HIF) resulted in increased cell adhesion and migration, and activation of target genes coding for paracrine factors. When MSC-HIF were intramyocardially injected in infarcted nude rats, significant improvement was found (after treatment of infarcted rats with MSC-HIF) in terms of cardiac function, angiogenesis, cardiomyocyte proliferation, and reduction of fibrotic tissue with no induction of cardiac hypertrophy. This finding provides evidences for a crucial role of HIF-1α on MSC biology and suggests the stabilization of HIF-1α as a novel strategy for cellular therapies.


Cardiovascular Research | 2016

Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes

Nahuel A. Garcia; Javier Moncayo-Arlandi; Pilar Sepúlveda; Antonio Díez-Juan

AIMS Cardiomyocytes (CMs) and endothelial cells (ECs) have an intimate anatomical relationship, which is essential for maintaining the metabolic requirements of the heart. Little is known about the mechanisms that regulate nutrient flow from ECs to associated CMs, especially in situations of acute stress when local active processes are required to regulate endothelial transport. We examined whether CM-derived exosomes can modulate glucose transport and metabolism in ECs. METHODS AND RESULTS In conditions of glucose deprivation, CMs increase the synthesis and secretion of exosomes. These exosomes are loaded with functional glucose transporters and glycolytic enzymes, which are internalized by ECs, leading to increased glucose uptake, glycolytic activity, and pyruvate production in recipient cells. CONCLUSION These findings establish CM-derived exosomes as key components of the cardio-endothelial communication system which, through intercellular protein complementation, would allow a rapid response from ECs to increase glucose transport and a putative uptake of metabolic fuels from blood to CMs. This CM-EC protein complementation process might have implications for metabolic regulation in health and disease.

Collaboration


Dive into the Pilar Sepúlveda's collaboration.

Top Co-Authors

Avatar

Jose L. Lopez-Ribot

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Díez-Juan

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Akaitz Dorronsoro

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana M. Cervera

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge