Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pim J. French is active.

Publication


Featured researches published by Pim J. French.


Nature Neuroscience | 2001

A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories

Matthew W. Jones; Ml Errington; Pim J. French; A Fine; T.V.P. Bliss; Sonia Garel; Patrick Charnay; Bruno Bozon; Serge Laroche; Sabrina Davis

The induction of long-term potentiation (LTP) in the dentate gyrus of the hippocampus is associated with a rapid and robust transcription of the immediate early gene Zif268. We used a mutant mouse with a targeted disruption of Zif268 to ask whether this gene, which encodes a zinc finger transcription factor, is required for the maintenance of late LTP and for the expression of long-term memory. We show that whereas mutant mice exhibit early LTP in the dentate gyrus, late LTP is absent when measured 24 and 48 hours after tetanus in the freely moving animal. In both spatial and non-spatial learning tasks, short-term memory remained intact, whereas performance was impaired in tests requiring long-term memory. Thus, Zif268 is essential for the transition from short- to long-term synaptic plasticity and for the expression of long-term memories.


Journal of Clinical Oncology | 2011

Medulloblastoma Comprises Four Distinct Molecular Variants

Paul A. Northcott; Andrey Korshunov; Hendrik Witt; Thomas Hielscher; Charles G. Eberhart; Stephen C. Mack; Eric Bouffet; Steven C. Clifford; Cynthia Hawkins; Pim J. French; James T. Rutka; Stefan Pfister; Michael D. Taylor

PURPOSE Recent genomic approaches have suggested the existence of multiple distinct subtypes of medulloblastoma. We studied a large cohort of medulloblastomas to determine how many subgroups of the disease exist, how they differ, and the extent of overlap between subgroups. METHODS We determined gene expression profiles and DNA copy number aberrations for 103 primary medulloblastomas. Bioinformatic tools were used for class discovery of medulloblastoma subgroups based on the most informative genes in the data set. Immunohistochemistry for subgroup-specific signature genes was used to determine subgroup affiliation for 294 nonoverlapping medulloblastomas on two independent tissue microarrays. RESULTS Multiple unsupervised analyses of transcriptional profiles identified the following four distinct, nonoverlapping molecular variants: WNT, SHH, group C, and group D. Supervised analysis of these four subgroups revealed significant subgroup-specific demographics, histology, metastatic status, and DNA copy number aberrations. Immunohistochemistry for DKK1 (WNT), SFRP1 (SHH), NPR3 (group C), and KCNA1 (group D) could reliably and uniquely classify formalin-fixed medulloblastomas in approximately 98% of patients. Group C patients (NPR3-positive tumors) exhibited a significantly diminished progression-free and overall survival irrespective of their metastatic status. CONCLUSION Our integrative genomics approach to a large cohort of medulloblastomas has identified four disparate subgroups with distinct demographics, clinical presentation, transcriptional profiles, genetic abnormalities, and clinical outcome. Medulloblastomas can be reliably assigned to subgroups through immunohistochemistry, thereby making medulloblastoma subclassification widely available. Future research on medulloblastoma and the development of clinical trials should take into consideration these four distinct types of medulloblastoma.


Journal of Clinical Oncology | 2013

Adjuvant Procarbazine, Lomustine, and Vincristine Chemotherapy in Newly Diagnosed Anaplastic Oligodendroglioma: Long-Term Follow-Up of EORTC Brain Tumor Group Study 26951

Martin J. van den Bent; Alba A. Brandes; M. J. B. Taphoorn; Johan M. Kros; Mathilde C.M. Kouwenhoven; Jean-Yves Delattre; Hans J.J.A. Bernsen; Marc Frenay; Cees C. Tijssen; Wolfgang Grisold; László Sipos; Roelien H. Enting; Pim J. French; Winand N. M. Dinjens; Charles J. Vecht; Anouk Allgeier; Denis Lacombe; Thierry Gorlia; Khê Hoang-Xuan

PURPOSE Anaplastic oligodendroglioma are chemotherapy-sensitive tumors. We now present the long-term follow-up findings of a randomized phase III study on the addition of six cycles of procarbazine, lomustine, and vincristine (PCV) chemotherapy to radiotherapy (RT). PATIENTS AND METHODS Adult patients with newly diagnosed anaplastic oligodendroglial tumors were randomly assigned to either 59.4 Gy of RT or the same RT followed by six cycles of adjuvant PCV. An exploratory analysis of the correlation between 1p/19q status and survival was part of the study. Retrospectively, the methylation status of the methyl-guanine methyl transferase gene promoter and the mutational status of the isocitrate dehydrogenase (IDH) gene were determined. The primary end points were overall survival (OS) and progression-free survival based on intent-to-treat analysis. RESULTS A total of 368 patients were enrolled. With a median follow-up of 140 months, OS in the RT/PCV arm was significantly longer (42.3 v 30.6 months in the RT arm, hazard ratio [HR], 0.75; 95% CI, 0.60 to 0.95). In the 80 patients with a 1p/19q codeletion, OS was increased, with a trend toward more benefit from adjuvant PCV (OS not reached in the RT/PCV group v 112 months in the RT group; HR, 0.56; 95% CI, 0.31 to 1.03). IDH mutational status was also of prognostic significance. CONCLUSION The addition of six cycles of PCV after 59.4 Gy of RT increases both OS and PFS in anaplastic oligodendroglial tumors. 1p/19q-codeleted tumors derive more benefit from adjuvant PCV compared with non-1p/19q-deleted tumors.


Cancer Research | 2009

Intrinsic Gene Expression Profiles of Gliomas Are a Better Predictor of Survival than Histology

Lonneke Gravendeel; Mathilde C.M. Kouwenhoven; Olivier Gevaert; Johan de Rooi; Andrew Stubbs; J. Elza Duijm; Anneleen Daemen; Fonnet E. Bleeker; Linda B. C. Bralten; Nanne K. Kloosterhof; Bart De Moor; Paul H. C. Eilers; Peter J. van der Spek; Johan M. Kros; Peter A. E. Sillevis Smitt; Martin J. van den Bent; Pim J. French

Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on histologic classification and clinical parameters. However, differences between histologic subclasses and grades are subtle, and classifying gliomas is subject to a large interobserver variability. To improve current classification standards, we have performed gene expression profiling on a large cohort of glioma samples of all histologic subtypes and grades. We identified seven distinct molecular subgroups that correlate with survival. These include two favorable prognostic subgroups (median survival, >4.7 years), two with intermediate prognosis (median survival, 1-4 years), two with poor prognosis (median survival, <1 year), and one control group. The intrinsic molecular subtypes of glioma are different from histologic subgroups and correlate better to patient survival. The prognostic value of molecular subgroups was validated on five independent sample cohorts (The Cancer Genome Atlas, Repository for Molecular Brain Neoplasia Data, GSE12907, GSE4271, and Li and colleagues). The power of intrinsic subtyping is shown by its ability to identify a subset of prognostically favorable tumors within an external data set that contains only histologically confirmed glioblastomas (GBM). Specific genetic changes (epidermal growth factor receptor amplification, IDH1 mutation, and 1p/19q loss of heterozygosity) segregate in distinct molecular subgroups. We identified a subgroup with molecular features associated with secondary GBM, suggesting that different genetic changes drive gene expression profiles. Finally, we assessed response to treatment in molecular subgroups. Our data provide compelling evidence that expression profiling is a more accurate and objective method to classify gliomas than histologic classification. Molecular classification therefore may aid diagnosis and can guide clinical decision making.


Nature Genetics | 2011

Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome

Twinkal C. Pansuriya; Ronald van Eijk; Pio D'Adamo; Maayke A.J.H. van Ruler; Marieke L. Kuijjer; Jan Oosting; Anne-Marie Cleton-Jansen; Jolieke G. van Oosterwijk; Sofie L. J. Verbeke; Danielle Meijer; Tom van Wezel; Karolin Hansén Nord; Luca Sangiorgi; Berkin Toker; Bernadette Liegl-Atzwanger; Mikel San-Julian; Raf Sciot; Nisha Limaye; Lars-Gunnar Kindblom; Soeren Daugaard; Catherine Godfraind; Laurence M. Boon; Miikka Vikkula; Kyle C. Kurek; Karoly Szuhai; Pim J. French; Judith V. M. G. Bovée

Ollier disease and Maffucci syndrome are non-hereditary skeletal disorders characterized by multiple enchondromas (Ollier disease) combined with spindle cell hemangiomas (Maffucci syndrome). We report somatic heterozygous mutations in IDH1 (c.394C>T encoding an R132C substitution and c.395G>A encoding an R132H substitution) or IDH2 (c.516G>C encoding R172S) in 87% of enchondromas (benign cartilage tumors) and in 70% of spindle cell hemangiomas (benign vascular lesions). In total, 35 of 43 (81%) subjects with Ollier disease and 10 of 13 (77%) with Maffucci syndrome carried IDH1 (98%) or IDH2 (2%) mutations in their tumors. Fourteen of 16 subjects had identical mutations in separate lesions. Immunohistochemistry to detect mutant IDH1 R132H protein suggested intraneoplastic and somatic mosaicism. IDH1 mutations in cartilage tumors were associated with hypermethylation and downregulated expression of several genes. Mutations were also found in 40% of solitary central cartilaginous tumors and in four chondrosarcoma cell lines, which will enable functional studies to assess the role of IDH1 and IDH2 mutations in tumor formation.


Breast Cancer Research and Treatment | 2010

Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.

Antoinette Hollestelle; Jord H. A. Nagel; Marcel Smid; Suzanne Lam; Fons Elstrodt; Marijke Wasielewski; Ser Sue Ng; Pim J. French; Justine K. Peeters; Marieke J. Rozendaal; Muhammad Riaz; Daphne G. Koopman; Timo L.M. ten Hagen; Bertie de Leeuw; E.C. Zwarthoff; Amina Teunisse; Peter J. van der Spek; J.G.M. Klijn; Winand N.M. Dinjens; Stephen P. Ethier; Hans Clevers; Aart G. Jochemsen; Michael A. den Bakker; John A. Foekens; John W. M. Martens; Mieke Schutte

Breast cancer has for long been recognized as a highly diverse tumor group, but the underlying genetic basis has been elusive. Here, we report an extensive molecular characterization of a collection of 41 human breast cancer cell lines. Protein and gene expression analyses indicated that the collection of breast cancer cell lines has retained most, if not all, molecular characteristics that are typical for clinical breast cancers. Gene mutation analyses identified 146 oncogenic mutations among 27 well-known cancer genes, amounting to an average of 3.6 mutations per cell line. Mutations in genes from the p53, RB and PI3K tumor suppressor pathways were widespread among all breast cancer cell lines. Most important, we have identified two gene mutation profiles that are specifically associated with luminal-type and basal-type breast cancer cell lines. The luminal mutation profile involved E-cadherin and MAP2K4 gene mutations and amplifications of Cyclin D1, ERBB2 and HDM2, whereas the basal mutation profile involved BRCA1, RB1, RAS and BRAF gene mutations and deletions of p16 and p14ARF. These subtype-specific gene mutation profiles constitute a genetic basis for the heterogeneity observed among human breast cancers, providing clues for their underlying biology and providing guidance for targeted pharmacogenetic intervention in breast cancer patients.


Journal of Clinical Oncology | 2013

Subgroup-Specific Prognostic Implications of TP53 Mutation in Medulloblastoma

Nataliya Zhukova; Vijay Ramaswamy; Marc Remke; Elke Pfaff; David Shih; Dianna Martin; Pedro Castelo-Branco; Berivan Baskin; Peter N. Ray; Eric Bouffet; André O. von Bueren; David Jones; Paul A. Northcott; Marcel Kool; Dominik Sturm; Trevor J. Pugh; Scott L. Pomeroy; Yoon-Jae Cho; Torsten Pietsch; Marco Gessi; Stefan Rutkowski; László Bognár; Almos Klekner; Byung Kyu Cho; Seung Ki Kim; Kyu Chang Wang; Charles G. Eberhart; Michelle Fèvre-Montange; Maryam Fouladi; Pim J. French

PURPOSE Reports detailing the prognostic impact of TP53 mutations in medulloblastoma offer conflicting conclusions. We resolve this issue through the inclusion of molecular subgroup profiles. PATIENTS AND METHODS We determined subgroup affiliation, TP53 mutation status, and clinical outcome in a discovery cohort of 397 medulloblastomas. We subsequently validated our results on an independent cohort of 156 medulloblastomas. RESULTS TP53 mutations are enriched in wingless (WNT; 16%) and sonic hedgehog (SHH; 21%) medulloblastomas and are virtually absent in subgroups 3 and 4 tumors (P < .001). Patients with SHH/TP53 mutant tumors are almost exclusively between ages 5 and 18 years, dramatically different from the general SHH distribution (P < .001). Children with SHH/TP53 mutant tumors harbor 56% germline TP53 mutations, which are not observed in children with WNT/TP53 mutant tumors. Five-year overall survival (OS; ± SE) was 41% ± 9% and 81% ± 5% for patients with SHH medulloblastomas with and without TP53 mutations, respectively (P < .001). Furthermore, TP53 mutations accounted for 72% of deaths in children older than 5 years with SHH medulloblastomas. In contrast, 5-year OS rates were 90% ± 9% and 97% ± 3% for patients with WNT tumors with and without TP53 mutations (P = .21). Multivariate analysis revealed that TP53 status was the most important risk factor for SHH medulloblastoma. Survival rates in the validation cohort mimicked the discovery results, revealing that poor survival of TP53 mutations is restricted to patients with SHH medulloblastomas (P = .012) and not WNT tumors. CONCLUSION Subgroup-specific analysis reconciles prior conflicting publications and confirms that TP53 mutations are enriched among SHH medulloblastomas, in which they portend poor outcome and account for a large proportion of treatment failures in these patients.


Journal of Clinical Investigation | 1996

A delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo.

Pim J. French; J H van Doorninck; R. H. P. C. Peters; Elly Verbeek; Nadia A. Ameen; Christopher R. Marino; H. R. De Jonge; Jan Bijman; Bob J. Scholte

The most prevalent mutation (delta F508) in cystic fibrosis patients inhibits maturation and transfer to the plasma membrane of the mutant cystic fibrosis transmembrane conductance regulator (CFTR). We have analyzed the properties of a delta F508 CFTR mouse model, which we described recently. We show that the mRNA levels of mutant CFTR are normal in all tissues examined. Therefore the reduced mRNA levels reported in two similar models may be related to their intronic transcription units. Maturation of mutant CFTR was greatly reduced in freshly excised oviduct, compared with normal. Accumulation of mutant CFTR antigen in the apical region of jejunum crypt enterocytes was not observed, in contrast to normal mice. In cultured gallbladder epithelial cells from delta F508 mice, CFTR chloride channel activity could be detected at only two percent of the normal frequency. However, in mutant cells that were grown at reduced temperature the channel frequency increased to over sixteen percent of the normal level at that temperature. The biophysical characteristics of the mutant channel were not significantly different from normal. In homozygous delta F508 mice we did not observe a significant effect of genetic background on the level of residual chloride channel activity, as determined by the size of the forskolin response in Ussing chamber experiments. Our data show that like its human homologue, mouse delta F508-CFTR is a temperature sensitive processing mutant. The delta F508 mouse is therefore a valid in vivo model of human delta F508-CFTR. It may help us to elucidate the processing pathways of complex membrane proteins. Moreover, it may facilitate the discovery of new approaches towards therapy of cystic fibrosis.


Lancet Oncology | 2011

Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma?

Nanne K. Kloosterhof; Linda B. C. Bralten; Hendrikus J Dubbink; Pim J. French; Martin J. van den Bent

The discovery of somatic mutations in the gene encoding isocitrate dehydrogenase-1 (IDH1) in glioblastomas was remarkable because the enzyme was not previously identified with any known oncogenic pathway. IDH1 is mutated in up to 75% of grade II and grade III diffuse gliomas. Apart from acute myeloid leukaemia, other tumour types do not carry IDH1 mutations. Mutations in a homologous gene, IDH2, have also been identified, although they are much rarer. Although TP53 mutations and 1p/19q codeletions are mutually exclusive in gliomas, in both of these genotypes IDH1 mutations are common. IDH1 and IDH2 mutations are early events in the development of gliomas. Moreover, IDH1 and IDH2 mutations are a major prognostic marker for overall and progression-free survival in grade II-IV gliomas. Mutated IDH1 has an altered catalytic activity that results in the accumulation of 2-hydroxyglutarate. Molecularly, IDH1 and IDH2 mutations are heterozygous, affect only a single codon, and rarely occur together. Because IDH1 does not belong to a traditional oncogenic pathway and is specifically and commonly mutated in gliomas, the altered enzymatic activity of IDH1 may provide a fundamentally new understanding of diffuse glioma.


Journal of Biological Chemistry | 1995

Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II

Pim J. French; Jan Bijman; Marcel Edixhoven; Arie B. Vaandrager; Bob J. Scholte; Suzanne M. Lohmann; Angus C. Nairn; Hugo R. de Jonge

Type II cGMP-dependent protein kinase (cGKII) isolated from pig intestinal brush borders and type Iα cGK (cGKI) purified from bovine lung were compared for their ability to activate the cystic fibrosis transmembrane conductance regulator (CFTR)-Cl− channel in excised, inside-out membrane patches from NIH-3T3 fibroblasts and from a rat intestinal cell line (IEC-CF7) stably expressing recombinant CFTR. In both cell models, in the presence of cGMP and ATP, cGKII was found to mimic the effect of the catalytic subunit of cAMP-dependent protein kinase (cAK) on opening CFTR-Cl− channels, albeit with different kinetics (2-3-min lag time, reduced rate of activation). By contrast, cGKI or a monomeric cGKI catalytic fragment was incapable of opening CFTR-Cl− channels and also failed to potentiate cGKII activation of the channels. The cAK activation but not the cGKII activation was blocked by a cAK inhibitor peptide. The slow activation by cGKII could not be ascribed to counteracting protein phosphatases, since neither calyculin A, a potent inhibitor of phosphatase 1 and 2A, nor ATPγS (adenosine 5′-O-(thiotriphosphate)), producing stable thiophosphorylation, was able to enhance the activation kinetics. Channels preactivated by cGKII closed instantaneously upon removal of ATP and kinase but reopened in the presence of ATP alone. Paradoxically, immunoprecipitated CFTR or CF-2, a cloned R domain fragment of CFTR (amino acids 645-835) could be phosphorylated to a similar extent with only minor kinetic differences by both isotypes of cGK. Phosphopeptide maps of CF-2 and CFTR, however, revealed very subtle differences in site-specificity between the cGK isoforms. These results indicate that cGKII, in contrast to cGKIα, is a potential activator of chloride transport in CFTR-expressing cell types.

Collaboration


Dive into the Pim J. French's collaboration.

Top Co-Authors

Avatar

Johan M. Kros

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thierry Gorlia

European Organisation for Research and Treatment of Cancer

View shared research outputs
Top Co-Authors

Avatar

Nanne K. Kloosterhof

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda B. C. Bralten

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Lonneke Gravendeel

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Lale Erdem-Eraslan

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Martin J. B. Taphoorn

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge