Pinar Coskun
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pinar Coskun.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Jason E. Kokoszka; Pinar Coskun; Luke A. Esposito; Douglas C. Wallace
To determine the importance of mitochondrial reactive oxygen species toxicity in aging and senescence, we analyzed changes in mitochondrial function with age in mice with partial or complete deficiencies in the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD). Liver mitochondria from homozygous mutant mice, with a complete deficiency in MnSOD, exhibited substantial respiration inhibition and marked sensitization of the mitochondrial permeability transition pore. Mitochondria from heterozygous mice, with a partial deficiency in MnSOD, showed evidence of increased proton leak, inhibition of respiration, and early and rapid accumulation of mitochondrial oxidative damage. Furthermore, chronic oxidative stress in the heterozygous mice resulted in an increased sensitization of the mitochondrial permeability transition pore and the premature induction of apoptosis, which presumably eliminates the cells with damaged mitochondria. Mice with normal MnSOD levels show the same age-related mitochondrial decline as the heterozygotes but occurring later in life. The premature decline in mitochondrial function in the heterozygote was associated with the compensatory up-regulation of oxidative phosphorylation enzyme activity. Thus mitochondrial reactive oxygen species production, oxidative stress, functional decline, and the initiation of apoptosis appear to be central components of the aging process.
Science | 2008
Weiwei Fan; Katrina G. Waymire; Navneet Narula; Peng Li; Christophe Rocher; Pinar Coskun; Mani A. Vannan; Jagat Narula; Grant R. MacGregor; Douglas C. Wallace
The majority of mitochondrial DNA (mtDNA) mutations that cause human disease are mild to moderately deleterious, yet many random mtDNA mutations would be expected to be severe. To determine the fate of the more severe mtDNA mutations, we introduced mtDNAs containing two mutations that affect oxidative phosphorylation into the female mouse germ line. The severe ND6 mutation was selectively eliminated during oogenesis within four generations, whereas the milder COI mutation was retained throughout multiple generations even though the offspring consistently developed mitochondrial myopathy and cardiomyopathy. Thus, severe mtDNA mutations appear to be selectively eliminated from the female germ line, thereby minimizing their impact on population fitness.
Biochimica et Biophysica Acta | 2012
Pinar Coskun; Joanne Wyrembak; Samual E. Schriner; Hsiao-Wen Chen; Christine Marciniack; Frank M. LaFerla; Douglas C. Wallace
BACKGROUND The genetics and pathophysiology of Alzheimer Disease (AD) and Parkinson Disease (PD) appears complex. However, mitochondrial dysfunction is a common observation in these and other neurodegenerative diseases. SCOPE OF REVIEW We argue that the available data on AD and PD can be incorporated into a single integrated paradigm based on mitochondrial genetics and pathophysiology. MAJOR CONCLUSIONS Rare chromosomal cases of AD and PD can be interpreted as affecting mitochondrial function, quality control, and mitochondrial DNA (mtDNA) integrity. mtDNA lineages, haplogroups, such haplogroup H5a which harbors the mtDNA tRNA(Gln) A8336G variant, are important risk factors for AD and PD. Somatic mtDNA mutations are elevated in AD, PD, and Down Syndrome and Dementia (DSAD) both in brains and also systemically. AD, DS, and DSAD brains also have reduced mtDNA ND6 mRNA levels, altered mtDNA copy number, and perturbed Aβ metabolism. Classical AD genetic changes incorporated into the 3XTg-AD (APP, Tau, PS1) mouse result in reduced forebrain size, life-long reduced mitochondrial respiration in 3XTg-AD males, and initially elevated respiration and complex I and IV activities in 3XTg-AD females which markedly declines with age. GENERAL SIGNIFICANCE Therefore, mitochondrial dysfunction provides a unifying genetic and pathophysiology explanation for AD, PD, and other neurodegenerative diseases. This article is part of a Special Issue entitled Biochemistry of Mitochondria.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Pinar Coskun; Eduardo Ruiz-Pesini; Douglas C. Wallace
Mitochondrial oxidative phosphorylation (OXPHOS) has been observed to decline with age in association with the accumulation of somatic mtDNA rearrangement (1) and base substitution (2–4) mutations. These observations have lead to the theory that the mtDNA is the aging clock. To this aging story was added a new twist in a recent issue of PNAS, an mtDNA mutation that promotes longevity (5).
Journal of Alzheimer's Disease | 2010
Pinar Coskun; Joanne Wyrembak; Olga Derbereva; Goar Melkonian; Eric Doran; Ira T. Lott; Elizabeth Head; Carl W. Cotman; Douglas C. Wallace
Increasing evidence is implicating mitochondrial dysfunction as a central factor in the etiology of Alzheimers disease (AD). The most significant risk factor in AD is advanced age and an important neuropathological correlate of AD is the deposition of amyloid-beta peptide (Abeta40 and Abeta42) in the brain. An AD-like dementia is also common in older individuals with Down syndrome (DS), though with a much earlier onset. We have shown that somatic mitochondrial DNA (mtDNA) control region (CR) mutations accumulate with age in post-mitotic tissues including the brain and that the level of mtDNA mutations is markedly elevated in the brains of AD patients. The elevated mtDNA CR mutations in AD brains are associated with a reduction in the mtDNA copy number and in the mtDNA L-strand transcript levels. We now show that mtDNA CR mutations increase with age in control brains; that they are markedly elevated in the brains of AD and DS and dementia (DSAD) patients; and that the increased mtDNA CR mutation rate in DSAD brains is associated with reduced mtDNA copy number and L-strand transcripts. The increased mtDNA CR mutation rate is also seen in peripheral blood DNA and in lymphoblastoid cell DNAs of AD and DSAD patients, and distinctive somatic mtDNA mutations, often at high heteroplasmy levels, are seen in AD and DSAD brain and blood cells DNA. In aging, DS, and DSAD, the mtDNA mutation level is positively correlated with beta-secretase activity and mtDNA copy number is inversely correlated with insoluble Abeta40 and Abeta42 levels. Therefore, mtDNA alterations may be responsible for both age-related dementia and the associated neuropathological changes observed in AD and DSAD.
Investigative Ophthalmology & Visual Science | 2009
Nitin Udar; Shari R. Atilano; M. Memarzadeh; David S. Boyer; Marilyn Chwa; Stephanie Lu; Barak Maguen; Jonathan J. Langberg; Pinar Coskun; Douglas C. Wallace; Anthony B. Nesburn; Nikan H. Khatibi; Dieter Hertzog; Khoi Le; Daniel Hwang; M. Cristina Kenney
PURPOSE To examine the mtDNA control regions in normal and age-related macular degeneration (AMD) retinas. To identify the mtDNA variations associated with AMD. METHODS Retinas from 10 normal and 11 AMD globes were isolated and analyzed for mtDNA rearrangements by long extension-polymerase chain reaction (LX-PCR) and for the nature and frequency of single-nucleotide polymorphisms (SNPs) in the mtDNA control region by direct sequencing. Blood DNA was extracted from 99 AMD and 92 age-matched control subjects. The sequence variations that define haplogroups H, I, J, K, T, V, X, and U were characterized by PCR, restriction enzyme digestion, and/or sequencing. RESULTS LX-PCR of retinal mtDNAs revealed high levels of rearrangements in the patients with AMD and the control subjects, consistent with the decline in mitochondrial function with age. However, the AMD retinas had higher oxidized DNA levels and a higher number of SNPs than controls (P = 0.02). The control region SNPs T16126C and A73G, commonly found in haplogroups J and T, were more frequent in the AMD retinas than in normal retinas. The associations between AMD and haplogroups J and T were confirmed and extended by analysis of blood DNA. SNPs at position a T16126C (J; odds ratio [OR] = 3.66), T16126C+G13368A (JT; OR = 10.27), A4917G+A73G (T4; OR = 5), and T3197C+A12308G (U5; OR = infinity), were all strongly associated with AMD. CONCLUSIONS AMD retinas exhibited increased mtDNA control region SNPs compared to normal retinas. This correlated with an increased frequency of mtDNA SNPs associated with haplogroups J, T and U in patients with AMD. These results implicate mitochondrial alterations in the etiology of AMD.
Mutation Research-dna Repair | 1999
Simon Melov; Pinar Coskun; Douglas C. Wallace
During the course of normal respiration, reactive oxygen species are produced which are particularly detrimental to mitochondrial function. This is shown by recent studies with a mouse that lacks the mitochondrial form of superoxide dismutase (Sod2). Tissues that are heavily dependent on mitochondrial function such as the brain and heart are most severely affected in the Sod2 mutant mouse. Recent work with a mouse mutant for the heart/muscle specific isoform of the mitochondrial adenine nuclear translocator (Ant1) demonstrates a potential link between mitochondrial oxidative stress and mitochondrial DNA mutations. These mutations can be detected by Long-extension PCR, a method for detecting a wide variety of mutations of the mitochondrial genome. Such mutations have also been observed in the mitochondrial genome with senescence regardless of the mean or maximal lifespan of the organism being studied. Mutations have been detected with age in Caenorhabditis elegans, mice, chimpanzees, and humans. This implies that a causal relationship may exist between mitochondrial reactive oxygen species production, and the senescence specific occurrence of mitochondrial DNA mutations.
Neurobiology of Aging | 1999
Simon Melova; Julie A. Schneider; Pinar Coskun; David A. Bennett; Douglas C. Wallace
Deletions of the mitochondrial DNA (mtDNA) have been shown to accumulate with age in a variety of species regardless of mean or maximal life span. This implies that such mutations are either a molecular biomarker of senescence or that they are more causally linked to senescence itself. One assay that can be used to detect these mtDNA mutations is the long-extension polymerase chain reaction assay. This assay amplifies approximately 16 kb of the mtDNA in mammalian mitochondria and preferentially amplifies mtDNAs that are either deleted or duplicated. We have applied this assay to the aging human brain and found a heterogeneous array of rearranged mtDNAs. In addition, we have developed in situ polymerase chain reaction to detect mtDNA within individual cells of both the mouse and the human brain as a first step in identifying and enumerating cells containing mutant mtDNAs in situ.
PLOS ONE | 2010
Octavio Garcia; Maria Torres; Pablo Helguera; Pinar Coskun; Jorge Busciglio
Background Downs syndrome (DS) is the most common genetic cause of mental retardation. Reduced number and aberrant architecture of dendritic spines are common features of DS neuropathology. However, the mechanisms involved in DS spine alterations are not known. In addition to a relevant role in synapse formation and maintenance, astrocytes can regulate spine dynamics by releasing soluble factors or by physical contact with neurons. We have previously shown impaired mitochondrial function in DS astrocytes leading to metabolic alterations in protein processing and secretion. In this study, we investigated whether deficits in astrocyte function contribute to DS spine pathology. Methodology/Principal Findings Using a human astrocyte/rat hippocampal neuron coculture, we found that DS astrocytes are directly involved in the development of spine malformations and reduced synaptic density. We also show that thrombospondin 1 (TSP-1), an astrocyte-secreted protein, possesses a potent modulatory effect on spine number and morphology, and that both DS brains and DS astrocytes exhibit marked deficits in TSP-1 protein expression. Depletion of TSP-1 from normal astrocytes resulted in dramatic changes in spine morphology, while restoration of TSP-1 levels prevented DS astrocyte-mediated spine and synaptic alterations. Astrocyte cultures derived from TSP-1 KO mice exhibited similar deficits to support spine formation and structure than DS astrocytes. Conclusions/Significance These results indicate that human astrocytes promote spine and synapse formation, identify astrocyte dysfunction as a significant factor of spine and synaptic pathology in the DS brain, and provide a mechanistic rationale for the exploration of TSP-1-based therapies to treat spine and synaptic pathology in DS and other neurological conditions.
Gene Therapy | 2005
A Flierl; Yu-Sheng Chen; Pinar Coskun; R J Samulski; Douglas C. Wallace
Mitochondrial myopathy, associated with muscle weakness and progressive external ophthalmoplegia, is caused by mutations in mitochondria oxidative phosphorylation genes including the heart–muscle isoform of the mitochondrial adenine nucleotide translocator (ANT1). To develop therapies for mitochondrial disease, we have prepared a recombinant adeno-associated viral vector (rAAV) carrying the mouse Ant1 cDNA. This vector has been used to transduce muscle cells and muscle from Ant1 mutant mice, which manifest mitochondrial myopathy. AAV-ANT1 transduction resulted in long-term, stable expression of the Ant1 transgene in muscle precursor cells as well as differentiated muscle fibers. The transgene ANT1 protein was targeted to the mitochondrion, was inserted into the mitochondrial inner membrane, formed a functional ADP/ATP carrier, increased the mitochondrial export of ATP and reversed the histopathological changes associated with the mitochondrial myopathy. Thus, AAV transduction has the potential of providing symptomatic relief for the ophthalmoplegia and ptosis resulting from paralysis of the extraocular eye muscles cause by mutations in the Ant1 gene.