Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ping Che is active.

Publication


Featured researches published by Ping Che.


The Plant Cell | 2007

An Endoplasmic Reticulum Stress Response in Arabidopsis Is Mediated by Proteolytic Processing and Nuclear Relocation of a Membrane-Associated Transcription Factor, bZIP28

Jian-Xiang Liu; Renu Srivastava; Ping Che; Stephen H. Howell

Stresses leading to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) elicit a highly conserved ER stress response in plants called the unfolded protein response (UPR). While the response itself is well documented in plants, the components of the signaling pathway are less well known. We have identified three membrane-associated basic domain/leucine zipper (bZIP) factors in Arabidopsis thaliana that are candidates for ER stress sensors/transducers. One of these factors, bZIP28, an ER-resident transcription factor, is activated in response to treatment by tunicamycin (TM), an agent that blocks N-linked protein glycosylation. Following TM treatment, bZIP28 is processed, releasing its N-terminal, cytoplasm-facing domain, which is translocated to the nucleus. Expression of a truncated form of bZIP28, containing only the cytoplasmic domain of the protein, upregulated the expression of ER stress response genes in the absence of stress conditions. Thus, bZIP28 serves as a sensor/transducer in Arabidopsis to mediate ER stress responses related to UPR.


Plant Journal | 2007

Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling

Jian-Xiang Liu; Renu Srivastava; Ping Che; Stephen H. Howell

We describe a signaling pathway that mediates salt stress responses in Arabidopsis. The response is mechanistically related to endoplasmic reticulum (ER) stress responses described in mammalian systems. Such responses involve processing and relocation to the nucleus of ER membrane-associated transcription factors to activate stress response genes. The salt stress response in Arabidopsis requires a subtilisin-like serine protease (AtS1P), related to mammalian S1P and a membrane-localized b-ZIP transcription factor, AtbZIP17, a predicted type-II membrane protein with a canonical S1P cleavage site on its lumen-facing side and a b-ZIP domain on its cytoplasmic side. In response to salt stress, it was found that myc-tagged AtbZIP17 was cleaved in an AtS1P-dependent process. To show that AtS1P directly targets AtbZIP17, cleavage was also demonstrated in an in vitro pull-down assay with agarose bead-immobilized AtS1P. Under salt stress conditions, the N-terminal fragment of AtbZIP17 tagged with GFP was translocated to the nucleus. The N-terminal fragment bearing the bZIP DNA binding domain was also found to possess transcriptional activity that functions in yeast. In Arabidopsis, AtbZIP17 activation directly or indirectly upregulated the expression of several salt stress response genes, including the homeodomain transcription factor ATHB-7. Upregulation of these genes by salt stress was blocked by T-DNA insertion mutations in AtS1P and AtbZIP17. Thus, salt stress induces a signaling cascade involving the processing of AtbZIP17, its translocation to the nucleus and the upregulation of salt stress genes.


Plant Physiology | 2002

Metabolic and Environmental Regulation of 3-Methylcrotonyl-Coenzyme A Carboxylase Expression in Arabidopsis

Ping Che; Eve Syrkin Wurtele; Basil J. Nikolau

3-Methylcrotonyl-coenzyme A carboxylase (MCCase) is a nuclear-encoded, mitochondrial biotin-containing enzyme composed of two types of subunits: the biotinylated MCC-A subunit (encoded by the gene At1g03090) and the non-biotinylated MCC-B subunit (encoded by the gene At4g34030). The major metabolic role of MCCase is in the mitochondrial catabolism of leucine, and it also might function in the catabolism of isoprenoids and the mevalonate shunt. In the work presented herein, the single-copy gene encoding the Arabidopsis MCC-A subunit was isolated and characterized. It contains 15 exons separated by 14 introns. We examined the expression of the single-copy MCC-Aand MCC-B genes in Arabidopsis by monitoring the accumulation of the two protein and mRNA products. In addition, the expression of these two genes was studied in transgenic plants containing the 1.1- and 1.0-kb 5′ upstream sequences of the two MCCase subunit genes, respectively, fused to the β-glucuronidase gene. Light deprivation induces MCCase expression, which is suppressed by exogenous carbohydrates, especially sucrose. Several lines of evidence indicate that the suppressor of MCCase expression is synthesized in illuminated photosynthetic organs, and can be translocated to other organs to regulate MCCase expression. These results are consistent with the hypothesis that the suppressor of MCCase expression is a carbohydrate, perhaps sucrose or a carbohydrate metabolite. We conclude that MCCase expression is primarily controlled at the level of gene transcription and regulated by a complex interplay between environmental and metabolic signals. The observed expression patterns may indicate that one of the physiological roles of MCCase is to maintain the carbon status of the organism, possibly via the catabolism of leucine.


Plant Physiology | 2011

Reverse-Genetic Analysis of the Two Biotin-Containing Subunit Genes of the Heteromeric Acetyl-Coenzyme A Carboxylase in Arabidopsis Indicates a Unidirectional Functional Redundancy

Xu Li; Hilal Ilarslan; Libuse Brachova; Hui-Rong Qian; Ling Li; Ping Che; Eve Syrkin Wurtele; Basil J. Nikolau

The heteromeric acetyl-coenzyme A carboxylase catalyzes the first and committed reaction of de novo fatty acid biosynthesis in plastids. This enzyme is composed of four subunits: biotin carboxyl-carrier protein (BCCP), biotin carboxylase, α-carboxyltransferase, and β-carboxyltransferase. With the exception of BCCP, single-copy genes encode these subunits in Arabidopsis (Arabidopsis thaliana). Reverse-genetic approaches were used to individually investigate the physiological significance of the two paralogous BCCP-coding genes, CAC1A (At5g16390, codes for BCCP1) and CAC1B (At5g15530, codes for BCCP2). Transfer DNA insertional alleles that completely eliminate the accumulation of BCCP2 have no perceptible effect on plant growth, development, and fatty acid accumulation. In contrast, transfer DNA insertional null allele of the CAC1A gene is embryo lethal and deleteriously affects pollen development and germination. During seed development the effect of the cac1a null allele first becomes apparent at 3-d after flowering, when the synchronous development of the endosperm and embryo is disrupted. Characterization of CAC1A antisense plants showed that reducing BCCP1 accumulation to 35% of wild-type levels, decreases fatty acid accumulation and severely affects normal vegetative plant growth. Detailed expression analysis by a suite of approaches including in situ RNA hybridization, promoter:reporter transgene expression, and quantitative western blotting reveal that the expression of CAC1B is limited to a subset of the CAC1A-expressing tissues, and CAC1B expression levels are only about one-fifth of CAC1A expression levels. Therefore, a likely explanation for the observed unidirectional redundancy between these two paralogous genes is that whereas the BCCP1 protein can compensate for the lack of BCCP2, the absence of BCCP1 cannot be tolerated as BCCP2 levels are not sufficient to support heteromeric acetyl-coenzyme A carboxylase activity at a level that is required for normal growth and development.


Plant Journal | 2012

Genetic dissection of methylcrotonyl CoA carboxylase indicates a complex role for mitochondrial leucine catabolism during seed development and germination

Geng Ding; Ping Che; Hilal Ilarslan; Eve Syrkin Wurtele; Basil J. Nikolau

3-methylcrotonyl CoA carboxylase (MCCase) is a nuclear-encoded, mitochondrial-localized biotin-containing enzyme. The reaction catalyzed by this enzyme is required for leucine (Leu) catabolism, and it may also play a role in the catabolism of isoprenoids and the mevalonate shunt. In Arabidopsis, two MCCase subunits (the biotinylated MCCA subunit and the non-biotinylated MCCB subunit) are each encoded by single genes (At1g03090 and At4g34030, respectively). A reverse genetic approach was used to assess the physiological role of MCCase in plants. We recovered and characterized T-DNA and transposon-tagged knockout alleles of the MCCA and MCCB genes. Metabolite profiling studies indicate that mutations in either MCCA or MCCB block mitochondrial Leu catabolism, as inferred from the increased accumulation of Leu. Under light deprivation conditions, the hyper-accumulation of Leu, 3-methylcrotonyl CoA and isovaleryl CoA indicates that mitochondrial and peroxisomal Leu catabolism pathways are independently regulated. This biochemical block in mitochondrial Leu catabolism is associated with an impaired reproductive growth phenotype, which includes aberrant flower and silique development and decreased seed germination. The decreased seed germination phenotype is only observed for homozygous mutant seeds collected from a parent plant that is itself homozygous, but not from a parent plant that is heterozygous. These characterizations may shed light on the role of catabolic processes in growth and development, an area of plant biology that is poorly understood.


Plant Physiology | 2003

The Role of Biotin in Regulating 3-Methylcrotonyl-Coenzyme A Carboxylase Expression in Arabidopsis

Ping Che; Lisa M. Weaver; Eve Syrkin Wurtele; Basil J. Nikolau

As a catalytic cofactor, biotin has a critical role in the enzymological mechanism of a number of enzymes that are essential in both catabolic and anabolic metabolic processes. In this study we demonstrate that biotin has additional non-catalytic functions in regulating gene expression in plants, which are biotin autotrophic organisms. Biotin controls expression of the biotin-containing enzyme, methylcrotonyl-coenzyme A (CoA) carboxylase by modulating the transcriptional, translational and/or posttranslational regulation of the expression of this enzyme. The bio1 mutant of Arabidopsis, which is blocked in the de novo biosynthesis of biotin, was used to experimentally alter the biotin status of this organism. In response to the bio1-associated depletion of biotin, the normally biotinylated A-subunit of methylcrotonyl-CoA carboxylase (MCCase) accumulates in its inactive apo-form, and both MCCase subunits hyperaccumulate. This hyperaccumulation occurs because the translation of each subunit mRNA is enhanced and/or because the each protein subunit becomes more stable. In addition, biotin affects the accumulation of distinct charge isoforms of MCCase. In contrast, in response to metabolic signals arising from the alteration in the carbon status of the organism, biotin modulates the transcription of the MCCase genes. These experiments reveal that in addition to its catalytic role as an enzyme cofactor, biotin has multiple roles in regulating gene expression.


Plant Journal | 2002

Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana

Andrew J. Cary; Ping Che; Stephen H. Howell


Planta | 2007

Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture

Ping Che; Sonia Lall; Stephen H. Howell


Plant Physiology | 1998

3-Methylcrotonyl-Coenzyme A Carboxylase Is a Component of the Mitochondrial Leucine Catabolic Pathway in Plants

Marc D. Anderson; Ping Che; Jianping Song; Basil J. Nikolau; Eve Syrkin Wurtele


Genetics | 2004

Quantitative Trait Loci Associated With Adventitious Shoot Formation in Tissue Culture and the Program of Shoot Development in Arabidopsis

Sonia Lall; Dan Nettleton; Rhonda DeCook; Ping Che; Stephen H. Howell

Collaboration


Dive into the Ping Che's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge