Ping-Fei Fang
Central South University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ping-Fei Fang.
Journal of Chromatography B | 2010
Ping-Fei Fang; Hua-Lin Cai; Huan-De Li; Rong-Hua Zhu; Qin-You Tan; Wei Gao; Ping Xu; Yiping Liu; W. Zhang; Yong-Chang Chen; Feng Zhang
A rapid and selective high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for simultaneous determination of isoniazid (INH), rifampicin (RFP) and levofloxacin (LVX) in mouse tissues and plasma has been developed and validated, using gatifloxacin as the internal standard (I.S.). The compounds and I.S. were extracted from tissue homogenate and plasma by a protein precipitation procedure with methanol. The HPLC separation of the analytes was performed on a Welch materials C4 column (250mmx4.6mm, 5.0microm, USA) at 25 degrees C, using a gradient elution program with the initial mobile phase constituting of 0.05% formic acid and methanol (93:7, v/v) at a flow-rate of 1.0ml/min. For all the three analytes, the recoveries varied between 83.3% and 98.8% in tissues and between 75.5% and 90.8% in plasma, the accuracies ranged from 91.7% to 112.0% in tissues and from 94.6% to 108.8% in plasma, and the intra- and inter-day precisions were less than 13.3% in tissues and less than 8.2% in plsama. Calibration ranges for INH were 0.11-5.42microg/g in tissues and 0.18-9.04microg/ml in plasma, for RFP were 0.12-1200microg/g in tissues and 4.0-200microg/ml in plasma, and for LVX were 0.13-26.2microg/g in tissues and 0.09-4.53microg/ml in plasma. The lower limits of quantification (LLOQs) for INH, RFP and LVX in mouse tissues were 0.11, 0.12 and 0.13microg/g and for those in mouse plasma were 18.1, 20.0 and 21.8ng/ml, respectively. The limits of detection (LODs) for INH, RFP and LVX in mouse tissues were 0.04, 0.05 and 0.05microg/g and for those in mouse plasma were 5.5, 6.0 and 6.6ng/ml, respectively. The established method was successfully applied to simultaneous determination of isoniazid, rifampicin and levofloxacin in mouse plasma and different mouse tissues.
Journal of Ethnopharmacology | 2015
Hui Gong; Bikui Zhang; Miao Yan; Ping-Fei Fang; Huan-De Li; Chunping Hu; Yang Yang; Peng Cao; Pei Jiang; Xin-rong Fan
ETHNOPHARMACOLOGICAL RELEVANCE Licorice (Glycyrrhizae radix), the root of Glycyrrhiza uralensis Fisch. (Leguminosae), is mainly used to moderate the characteristics of toxic herbs in Traditional Chinese Medicine, which could be partly interpreted as detoxification. However, the underlying mechanism is still not fully elucidated. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a key role in the protection against toxic xenobiotics. In our previous research, we have identified that extracts from Glycyrrhiza uralensis induced the expression of Nrf2 nuclear protein and its downstream genes. This research aims to screen the most potent Nrf2 inducer isolated from Glycyrrhiza uralensis and examine its effect on Nrf2 signaling pathway and detoxification system. MATERIALS AND METHODS Four compounds derived from Glycyrrhiza uralensis (glycyrrhetinic acid, liquiritigenin, isoliquiritigenin and liquiritin) were screened by ARE-luciferase reporter. The most potent ARE-luciferase inducer was chosen to further examine its effect on Nrf2 and detoxification genes in HepG2 cells. The role of Nrf2-dependent mechanism was tested by using Nrf2 knockout mice (Nrf2 KO) and Nrf2 wild-type mice (Nrf2 WT). RESULTS ARE-luciferase reporter assay showed these four compounds were all potent Nrf2 inducers, and isoliquiritigenin was the most potent inducer. Isoliquiritigenin significantly up-regulated the expression of Nrf2 and its downstream detoxification genes UDP-glucuronosyltransferase 1A1 (UGT1A1), glutamate cysteine ligase (GCL), multidrug resistance protein 2 (MRP2) and bile salt export pump (BSEP) in vitro and in vivo. Additionally, isoliquiritigenin showed Nrf2-dependent transactivation of UGT1A1, GCLC and MRP2. CONCLUSIONS Isoliquiritigenin, isolated from Glycyrrhiza uralensis, stimulates detoxification system via Nrf2 activation, which could be a potential protective mechanism of licorice.
Psychiatry Research-neuroimaging | 2011
Hua-Lin Cai; Ping-Fei Fang; Huan-De Li; Xiang-Hui Zhang; Li Hu; Wen Yang; Hai-Sen Ye
Abnormalities in plasma monoamine metabolism reflect partly the illness of schizophrenia and sometimes the symptoms. Such studies have been repeatedly reported but have rarely taken both metabolites and parent amines or inter-amine activity ratios into account. In this study, the monoamines, their metabolites, turnovers and between-metabolite ratios in plasma were measured longitudinally in 32 schizophrenic patients treated with risperidone for 6 weeks, to examine possible biochemical alterations in schizophrenia, and to examine the association between treatment responses and psychopathology assessed according to the Positive and Negative Syndrome Scale (PANSS). The results showed lower level of plasma 3,4-dihydroxyphenylacetic acid (DOPAC) in relapsed versus first-episode schizophrenic patients, higher norepinephrine (NE) turnover rate (TR) in undifferentiated in comparison to paranoid schizophrenic patients and relatively higher metabolic activity of dopamine (DA) to serotonin (5-HT) in first-episode versus relapsed schizophrenic patients. Risperidone treatment induced a decrement of plasma DA levels and increments of plasma DOPAC and DA TR in the total group of schizophrenic patients. The turnover rate of 5-HT was was reduced in undifferentiated and relapsed subgroups of schizophrenic patients. The linkages between 5-HT TR, DA/NE relative activity and clinical symptomatology were also identified. These findings are consistent with an involvement of these systems in the pathogenesis of schizophrenia as well as in the responses to treatment, and the usefulness of certain biochemical indices as markers for subgrouping.
Evidence-based Complementary and Alternative Medicine | 2016
Ling-Juan Cao; Huan-De Li; Miao Yan; Zhi-hua Li; Hui Gong; Pei Jiang; Yang Deng; Ping-Fei Fang; Bi-Kui Zhang
Triptolide (TP), an active ingredient of Tripterygium wilfordii Hook f., possesses a wide range of biological activities. Oxidative stress likely plays a role in TP-induced hepatotoxicity. Isoliquiritigenin (ISL) and glycyrrhetinic acid (GA) are potent hepatoprotection agents. The aim of the present study was to investigate whether Nrf2 pathway is associated with the protective effects of ISL and GA against TP-induced oxidative stress or not. HepG2 cells were treated with TP (50 nM) for 24 h after pretreatment with ISL and GA (5, 10, and 20 μM) for 12 h and 24 h, respectively. The results demonstrated that TP treatment significantly increased ROS levels and decreased GSH levels. Both ISL and GA pretreatment decreased ROS and meanwhile enhanced intracellular GSH content. Additionally, TP treatment obviously decreased the protein expression of Nrf2 and its target genes including HO-1 and MRP2 except NQO1. Moreover, both ISL and GA displayed activities as inducers of Nrf2 and increased the expression of HO-1, NQO1, and MRP2. Taken together the current data confirmed that ISL and GA could activate the Nrf2 antioxidant response in HepG2 cells, increasing the expression of its target genes which may be partly associated with their protective effects in TP-induced oxidative stress.
European Journal of Pharmacology | 2012
Dan-Hua Xu; Miao Yan; Huan-De Li; Ping-Fei Fang; Yan-Wen Liu
Brucine is a central agonist that can pass through the blood-brain barrier (BBB). The goal of this study is to examine whether brucine is one of the substrates of the drug transporter P-glycoprotein (P-gp) and to examine the effects of P-gp on the brucine transport at the in vitro BBB model. The P-gp ATPase assay was utilized to investigate the in vitro affinity of P-gp to brucine. Results suggested that K(m) of brucine (11.4 μmol/l) was smaller than the positive control, verapamil (16.4 μmol/l). In this study, we developed an in vitro BBB model, comprising a co-culture of primary rat brain microvessel endothelial cells and astrocytes for the transport study. The validated model was correct and available. Transendothelial electrical resistance reached (283.78 ± 18.85) Ω cm(2). The model displayed limited permeability to fluorescein sodium and [(125)I]albumin, with the apparent permeability coefficient Papp of (10.36 ± 0.86) × 10(-6) cm/s and (6.00 ± 0.78) × 10(-6)cm/s, respectively. The quantity of the bidirectional transport of brucine was determined by ultra-performance liquid chromatography-tandem mass spectrometry. In the absence of verapamil, the transport of brucine from basolateral compartment to apical compartment (BL-AP) was higher than from AP to BL at low, middle, and high concentrations (P<0.05). The excretion rate was 1.32, 1.56, and 1.54, respectively. However, following exposure to verapamil, the excretion rate at three different concentrations was decreased (P<0.05). All the results suggest that P-gp prevented brucine from passing through the in vitro BBB model.
Therapeutic Drug Monitoring | 2017
Zi‐wei Li; Fenghua Peng; Miao Yan; Wu Liang; Xiaolei Liu; Yanqin Wu; Xiao‐bin Lin; Shenglan Tan; Feng Wang; Ping Xu; Ping-Fei Fang; Yiping Liu; Da-Xiong Xiang; Bui-kui Zhang
Background: Invasive fungal infection (IFI) is one of the leading causes of early death after renal transplantation. Voriconazole (VRC) is the first-line drug of IFI. Because of the large inter- and intraindividual variability in VRC plasma concentrations and the narrow therapeutic window for treating patients with IFIs, it is crucial to study the factors which could influence pharmacokinetic variability. We performed a population pharmacokinetics (PPK) study of VRC for personalized medicine. Methods: A total of 125 trough concentrations (Cmin) from 56 patients were evaluated, retrospectively. Nonlinear mixed effect model was used to describe a PPK model that was internally validated by bootstrap method. Potential covariates included demographic characteristics, physiological and pathological data, concomitant medications, and CYP2C19 genotype. Results: A 1-compartment model with first-order absorption and elimination was fit to characterize the VRC pharmacokinetics in renal transplant recipients (RTRs). Aspartate aminotransferase (AST) had a significant influence on clearance (CL) while CYP2C19 genotype had a major impact on the volume of distribution (V). The parameters of CL and V were 4.76 L/h and 22.47 L, respectively. The final model was V (L) = 22.47 × [1 + 2.21 × (EM = 1)] × [1 + 4.67 × (IM = 1)] × [1 + 3.30 × (PM = 1)] × exp (0.96); CL (L/h) = 4.76 × (AST/33)^(−0.23) × exp (0.14). VRC Cmin in intermediate metabolizers was significantly higher than in extensive metabolizers. Conclusions: Liver function and CYP2C19 polymorphism are major determinants of VRC pharmacokinetic variability in RTRs. Genotypes and clinical biomarkers can determine the initial scheme. Subsequently, therapeutic drug monitoring can optimize clinical efficacy and minimize toxicity. Hence, this is a feasible way to facilitate personalized medicine in RTRs. In addition, it is the first report about PPK of VRC in RTRs.
Phytotherapy Research | 2017
Zhi-hua Li; Miao Yan; Lingjuan Cao; Ping-Fei Fang; Zhaohui Guo; Zhen-yan Hou; Bikui Zhang
Triptolide (TP) is an active ingredient isolated from Tripterygium wilfordii Hook. f. (TWHF), which is a traditional herbal medicine widely used for the treatment of rheumatoid arthritis and autoimmune disease in the clinic. However, its adverse reactions of hepatotoxicity and nephrotoxicity have been frequently reported which limited its clinical application. The aim of this study was to investigate the mechanism of glycyrrhetinic acid (GA) effecting on the elimination of TP in HK‐2 cells and the role of the efflux transporters of P‐gp and multidrug resistance‐associated proteins (MRPs) in this process. An ultra performance liquid chromatography–electrospray ionization–mass spectrometry (UPLC‐ESI‐MS) analytical method was established to determine the intracellular concentration of TP. In order to study the role of efflux transporters of P‐gp and MRPs in GA impacting on the accumulation of TP, the inhibitors of efflux transporters (P‐gp: verapamil; MRPs: MK571) were used in this study. The results showed that GA could enhance the elimination of TP and reduce the TP accumulation in HK‐2 cells. Verapamil and MK571 could increase the intracellular concentration of TP; in addition, GA co‐incubation with verapamil significantly increased the TP cellular concentration compared with the control group. In conclusion, GA could reduce the accumulation of TP in HK‐2 cells, which was related to P‐gp. This is probably one of the mechanisms that TP combined with GA to detoxify its toxicity. Copyright
Frontiers in Pharmacology | 2018
Zhen-yan Hou; Lei Chen; Ping-Fei Fang; Hua-Lin Cai; Huaibo Tang; Yongbo Peng; Yang Deng; Ling-Juan Cao; Huan-De Li; Bi-Kui Zhang; Miao Yan
Triptolide (TP), the main bioactive component of Tripterygium wilfordii Hook F, can cause severe hepatotoxicity. Isoliquiritigenin (ISL) has been reported to be able to protect against TP-induced liver injury, but the mechanisms are not fully elucidated. This study aims to explore the role of nuclear transcription factor E2-related factor 2 (Nrf2) and hepatic transporters in TP-induced hepatotoxicity and the reversal protective effect of ISL. TP treatment caused both cytotoxicity in L02 hepatocytes and acute liver injury in mice. Particularly, TP led to the disorder of bile acid (BA) profiles in mice livers. Combined treatment of TP with ISL effectively alleviated TP-induced hepatotoxicity. Furthermore, ISL pretreatment enhanced Nrf2 expressions and nuclear accumulations and its downstream NAD(P)H: quinine oxidoreductase 1 (NQO1) expression. Expressions of hepatic P-gp, MRP2, MRP4, bile salt export pump, and OATP2 were also induced. In addition, in vitro transport assays identified that neither was TP exported by MRP2, OATP1B1, or OATP1B3, nor did TP influence the transport activities of P-gp or MRP2. All these results indicate that ISL may reduce the hepatic oxidative stress and hepatic accumulations of both endogenous BAs and exogenous TP as well as its metabolites by enhancing the expressions of Nrf2, NQO1, and hepatic influx and efflux transporters. Effects of TP on hepatic transporters are mainly at the transcriptional levels, and changes of hepatic BA profiles are very important in the mechanisms of TP-induced hepatotoxicity.
Experimental and Therapeutic Medicine | 2018
Zhaohui Guo; Miao Yan; Lei Chen; Ping-Fei Fang; Zhi-hua Li; Zimeng Wan; Si-si Cao; Zhen-yan Hou; Shanshan Wei; Wenqun Li; Bi-Kui Zhang
Doxorubicin (DOX), a potent and widely used anticancer agent, can give rise to severe cardiotoxicity that limits its clinical use by inducing oxidative stress. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the central regulator of cellular responses to electrophilic/oxidative stress, which serves a critical role in maintenance of normal cardiac function. Tanshinone IIA (Tan IIA) has previously been reported to protect against DOX-induced cardiotoxicity. The aim of the present study was to elucidate whether Nrf2 signaling serves a role in the underlying mechanism. In the animal model, DOX induced acute cardiotoxicity, whereas Tan IIA pretreatment reduced the activity of myocardial enzymes, and increased activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione (GSH). Furthermore, Tan IIA pretreatment (3–10 µM) significantly increased the cell viability and markedly restored morphological changes in DOX-injured H9c2 cells, decreased the generation of reactive oxygen species, and increased the level of intracellular GSH. Additionally, Tan IIA pretreatment also induced the nuclear accumulation of Nrf2 and its downstream genes heme oxygenase-1, NAD(P)H dehydrogenase (quinone) 1, and glutamate-cysteine ligase catalytic subunit in both the mice cardiac tissues and H9c2 cells. Nrf2 knockdown by small interfering RNA downregulated Tan IIA-induced Nrf2 activation and reversed the effect of Tan IIA on the DOX-induced inhibition of cell viability. These results suggest that the Nrf2-dependent antioxidant response mediates the protective effect of Tan IIA on DOX-induced cardiotoxicity.
Evidence-based Complementary and Alternative Medicine | 2017
Ling-Juan Cao; Zhen-yan Hou; Huan-De Li; Bi-Kui Zhang; Ping-Fei Fang; Da-Xiong Xiang; Zhi-hua Li; Hui Gong; Yang Deng; Yan-xia Ma; Huaibo Tang; Miao Yan
To investigate the potential role of nuclear factor erythroid 2-related factor 2 (Nrf2) in licorice ethanol extract (LEE) against triptolide- (TP-) induced hepatotoxicity, HepG2 cells were exposed to LEE (30, 60, and 90 mg·L−1) for 12 h and then treated with TP (50 nM) for 24 h. Besides, an acute liver injury model was established in ICR mice by a single dose of TP (1.0 mg·kg−1, i.p.). Relevant oxidant and antioxidant mediators were analyzed. TP led to an obvious oxidative stress as evidenced by increasing levels of ROS and decreasing GSH contents in HepG2 cells. In vitro results were likely to hold true in in vivo experiments. LEE protected against TP-induced oxidative stress in both in vitro and in vivo conditions. Furthermore, the decreased level of Nrf2 in the TP-treated group was observed. The mRNA levels of downstream genes decreased as well in ICR mice liver, whereas they increased in HepG2 cells. In contrast, LEE pretreatment significantly increased the level of Nrf2 and its downstream genes. LEE protects against TP-induced oxidative stress partly via the activation of Nrf2 pathway.