Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ping-Hui Tseng is active.

Publication


Featured researches published by Ping-Hui Tseng.


Nature Immunology | 2008

Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling

Sivakumar Vallabhapurapu; Atsushi Matsuzawa; Wei Zhou Zhang; Ping-Hui Tseng; Jonathan J. Keats; Haopeng Wang; Dario A. A. Vignali; P. Leif Bergsagel; Michael Karin

The adaptor and signaling proteins TRAF2, TRAF3, cIAP1 and cIAP2 may inhibit alternative nuclear factor-κB (NF-κB) signaling in resting cells by targeting NF-κB–inducing kinase (NIK) for ubiquitin-dependent degradation, thus preventing processing of the NF-κB2 precursor protein p100 to release p52. However, the respective functions of TRAF2 and TRAF3 in NIK degradation and activation of alternative NF-κB signaling have remained elusive. We now show that CD40 or BAFF receptor activation result in TRAF3 degradation in a cIAP1-cIAP2- and TRAF2-dependent way owing to enhanced cIAP1, cIAP2 TRAF3-directed ubiquitin ligase activity. Receptor-induced activation of cIAP1 and cIAP2 correlated with their K63-linked ubiquitination by TRAF2. Degradation of TRAF3 prevented association of NIK with the cIAP1-cIAP2-TRAF2 ubiquitin ligase complex, which resulted in NIK stabilization and NF-κB2-p100 processing. Constitutive activation of this pathway causes perinatal lethality and lymphoid defects.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A NOD2–NALP1 complex mediates caspase-1-dependent IL-1β secretion in response to Bacillus anthracis infection and muramyl dipeptide

Li-Chung Hsu; Syed Raza Ali; Shauna M. McGillivray; Ping-Hui Tseng; Sanjeev Mariathasan; Eric Humke; Lars Eckmann; Jonathan J. Powell; Victor Nizet; Vishva M. Dixit; Michael Karin

NOD2, a NOD-like receptor (NLR), is an intracellular sensor of bacterial muramyl dipeptide (MDP) that was suggested to promote secretion of the proinflammatory cytokine IL-1β. Yet, the molecular mechanism by which NOD2 can stimulate IL-1β secretion, and its biological significance were heretofore unknown. We found that NOD2 through its N-terminal caspase recruitment domain directly binds and activates caspase-1 to trigger IL-1β processing and secretion in MDP-stimulated macrophages, whereas the C-terminal leucine-rich repeats of NOD2 prevent caspase-1 activation in nonstimulated cells. MDP challenge induces the association of NOD2 with another NLR protein, NALP1, and gel filtration analysis revealed the formation of a complex consisting of NOD2, NALP1, and caspase-1. Importantly, Bacillus anthracis infection induces IL-1β secretion in a manner that depended on caspase-1 and NOD2. In vitro, Anthrax lethal toxin strongly potentiated IL-1β secretion, and that response was NOD2 and caspase-1-dependent. Thus, NOD2 plays a key role in the B. anthracis-induced inflammatory response by being a critical mediator of IL-1β secretion.


Nature Immunology | 2010

Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines

Ping-Hui Tseng; Atsushi Matsuzawa; Weizhou Zhang; Takashi Mino; Dario A. A. Vignali; Michael Karin

Balanced production of type I interferons and proinflammatory cytokines after engagement of Toll-like receptors (TLRs), which signal through adaptors containing a Toll–interleukin 1 receptor (TIR) domain, such as MyD88 and TRIF, has been proposed to control the pathogenesis of autoimmune disease and tumor responses to inflammation. Here we show that TRAF3, a ubiquitin ligase that interacts with both MyD88 and TRIF, regulated the production of interferon and proinflammatory cytokines in different ways. Degradative ubiquitination of TRAF3 during MyD88-dependent TLR signaling was essential for the activation of mitogen-activated protein kinases (MAPKs) and production of inflammatory cytokines. In contrast, TRIF-dependent signaling triggered noncanonical TRAF3 self-ubiquitination that activated the interferon response. Inhibition of degradative ubiquitination of TRAF3 prevented the expression of all proinflammatory cytokines without affecting the interferon response.


Cancer Research | 2004

From the Cyclooxygenase-2 Inhibitor Celecoxib to a Novel Class of 3-Phosphoinositide-Dependent Protein Kinase-1 Inhibitors

Jiuxiang Zhu; Jui-Wen Huang; Ping-Hui Tseng; Ya-Ting Yang; Joseph W. Fowble; Chung-Wai Shiau; Yeng-Jeng Shaw; Samuel K. Kulp; Ching-Shih Chen

The blockade of Akt activation through the inhibition of 3-phosphoinositide-dependent kinase-1 (PDK-1) represents a major signaling mechanism whereby celecoxib mediates apoptosis. Celecoxib, however, is a weak PDK-1 inhibitor (IC50, 48 μm), requiring at least 30 μm to exhibit discernable effects on the growth of tumor cells in vitro. Here, we report the structure-based optimization of celecoxib to develop PDK-1 inhibitors with greater potency in enzyme inhibition and growth inhibition. Kinetics of PDK-1 inhibition by celecoxib with respect to ATP suggest that celecoxib derivatives inhibit PDK-1 by competing with ATP for binding, a mechanism reminiscent to that of many kinase inhibitors. Structure-activity analysis together with molecular modeling was used to generate compounds that were tested for their potency in inhibiting PDK-1 kinase activity and in inducing apoptosis in PC-3 prostate cancer cells. Docking of potent compounds into the ATP-binding site of PDK-1 was performed for lead optimization, leading to two compounds, OSU-03012 and OSU-03013, with IC50 values in PDK-1 inhibition and apoptosis induction in the low μm range. Exposure of PC-3 cells to these agents led to Akt dephosphorylation and inhibition of p70 S6 kinase activity. Moreover, overexpression of constitutively active forms of PDK-1 and Akt partially protected OSU-03012-induced apoptosis. Screening in a panel of 60 cell lines and more extensive testing in PC-3 cells indicated that the mean concentration for total growth inhibition was ∼3 μm for both agents. Considering the conserved role of PDK-1/Akt signaling in promoting tumorigenesis, these celecoxib analogs are of translational relevance for cancer prevention and therapy.


Cancer Research | 2004

3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells.

Samuel K. Kulp; Ya-Ting Yang; Chin Chun Hung; Kuen-Feng Chen; Ju-Ping Lai; Ping-Hui Tseng; Joseph W. Fowble; Patrick J. Ward; Ching-Shih Chen

Regarding the involvement of cyclooxygenase-2 (COX-2)-independent pathways in celecoxib-mediated antineoplastic effects, the following two issues remain outstanding: identity of the non-COX-2 targets and relative contributions of COX-2-dependent versus -independent mechanisms. We use a close celecoxib analog deficient in COX-2-inhibitory activity, DMC {4-[5-(2,5-dimethylphenyl)-3(trifluoromethyl)-1H-pyrazol-1-yl]benzene-sulfonamide}, to examine the premise that Akt signaling represents a major non-COX-2 target. Celecoxib and DMC block Akt activation in PC-3 cells through the inhibition of phosphoinositide-dependent kinase-1 (PDK-1) with IC50 of 48 and 38 μm, respectively. The consequent effect on Akt activation is more pronounced (IC50 values of 28 and 20 μm, respectively), which might be attributed to the concomitant dephosphorylation by protein phosphatase 2A. In serum-supplemented medium, celecoxib and DMC cause G1 arrest, and at higher concentrations, they induce apoptosis with relative potency comparable with that in blocking Akt activation. Moreover, the effect of daily oral celecoxib and DMC at 100 and 200 mg/kg on established PC-3 xenograft tumors is assessed. Celecoxib at both doses and DMC at 100 mg/kg had marginal impacts. However, a correlation exists between the in vitro potency of DMC and its ability at 200 mg/kg to inhibit xenograft tumor growth through the inhibition of Akt activation. Analysis of the tumor samples indicates that a differential reduction in the phospho-Akt/Akt ratio was noted in celecoxib- and DMC-treated groups vis-à-vis the control group. Together, these data underscore the role of 3-phosphoinositide-dependent protein kinase-1/Akt signaling in celecoxib-mediated in vitro antiproliferative effects in prostate cancer cells.


Journal of Biological Chemistry | 2005

Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes

Chang Shi Chen; Shu Chuan Weng; Ping-Hui Tseng; Ho Pi Lin; Ching-Shih Chen

Despite advances in understanding the role of histone deacetylases (HDACs) in tumorigenesis, the mechanism by which HDAC inhibitors mediate antineoplastic effects remains elusive. Modifications of the histone code alone are not sufficient to account for the antitumor effect of HDAC inhibitors. The present study demonstrates a novel histone acetylation-independent mechanism by which HDAC inhibitors cause Akt dephosphorylation in U87MG glioblastoma and PC-3 prostate cancer cells by disrupting HDAC-protein phosphatase 1 (PP1) complexes. Of four HDAC inhibitors examined, trichostatin A (TSA) and HDAC42 exhibit the highest activity in down-regulating phospho-Akt, followed by suberoylanilide hydroxamic acid, whereas MS-275 shows only a marginal effect at 5 μm. This differential potency parallels the respective activities in inducing tubulin acetylation, a non-histone substrate for HDAC6. Evidence indicates that this Akt dephosphorylation is not mediated through deactivation of upstream kinases or activation of downstream phosphatases. However, the effect of TSA on phospho-Akt can be rescued by PP1 inhibition but not that of protein phosphatase 2A. Immunochemical analyses reveal that TSA blocks specific interactions of PP1 with HDACs 1 and 6, resulting in increased PP1-Akt association. Moreover, we used isozyme-specific small interfering RNAs to confirm the role of HDACs 1 and 6 as key mediators in facilitating Akt dephosphorylation. The selective action of HDAC inhibitors on HDAC-PP1 complexes represents the first example of modulating specific PP1 interactions by small molecule agents. From a clinical perspective, identification of this PP1-facilitated dephosphorylation mechanism underscores the potential use of HDAC inhibitors in lowering the apoptosis threshold for other therapeutic agents through Akt down-regulation.


Science | 2008

Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex

Atsushi Matsuzawa; Ping-Hui Tseng; Sivakumar Vallabhapurapu; Jun-Li Luo; Weizhou Zhang; Haopeng Wang; Dario A. A. Vignali; Ewen Gallagher; Michael Karin

Cytokine signaling is thought to require assembly of multicomponent signaling complexes at cytoplasmic segments of membrane-embedded receptors, in which receptor-proximal protein kinases are activated. Indeed, CD40, a tumor necrosis factor receptor (TNFR) family member, forms a complex containing adaptor molecules TRAF2 and TRAF3, ubiquitin-conjugating enzyme Ubc13, cellular inhibitor of apoptosis proteins 1 and 2 (c-IAP1/2), IκB kinase regulatory subunit IKKγ (also called NEMO), and mitogen-activated protein kinase (MAPK) kinase kinase MEKK1 upon ligation. TRAF2, Ubc13, and IKKγ were required for complex assembly and activation of MEKK1 and MAPK cascades. However, these kinases were not activated unless the multicomponent signaling complex translocated from CD40 to the cytosol upon c-IAP1/2–induced degradation of TRAF3. This two-stage signaling mechanism may apply to other innate immune receptors, accounting for spatial and temporal separation of MAPK and IKK signaling.


Circulation | 2002

Cyclooxygenase-1 and Bicistronic Cyclooxygenase-1/Prostacyclin Synthase Gene Transfer Protect Against Ischemic Cerebral Infarction

Heng Lin; Teng Nan Lin; Wai Mui Cheung; Gau Ming Nian; Ping-Hui Tseng; Shu Fen Chen; Jean Ju Chen; Song-Kun Shyue; Jun Yang Liou; Cheng Wen Wu; Kenneth K. Wu

Background—We tested the hypothesis that bicistronic cyclooxygenase-1 (COX-1)/prostacyclin synthase (PGIS) and COX-1 gene transfer reduce cerebral infarct volume by augmenting synthesis of protective prostaglandins. Methods and Results—We infused into lateral ventricle of a rat stroke model recombinant adenoviruses (rAd) containing COX-1 (Adv-COX-1), COX-1 and PGIS (Adv-COX-1/PGIS), or Adv-PGK control vector, and we determined COX-1 and PGIS protein and eicosanoid levels and infarct volume. COX-1 and PGIS proteins were increased in a time-dependent manner. Adv-COX-1/PGIS infusion selectively augmented prostacyclin levels, with reduction of other eicosanoids in ischemic cortex and a significant reduction of infarct volume, even when the rAd was administered 5 hours after ischemia. Infusion of Adv-COX-1 also increased prostacyclin, suppressed leukotriene levels, and achieved a similar degree of cerebral protection. Its neuroprotection was abrogated by treatment with a selective COX-1 inhibitor. Conclusions—COX-1/PGIS and COX-1 gene transfer reduce cerebral infarct volume by augmenting prostacyclin and suppressing leukotriene productions. COX-1–based gene transfer has potential for treating ischemic stroke.


Molecular Pharmacology | 2006

Overcoming Trastuzumab Resistance in HER2-Overexpressing Breast Cancer Cells by Using a Novel Celecoxib-Derived Phosphoinositide-Dependent Kinase-1 Inhibitor

Ping-Hui Tseng; Yu Chieh Wang; Shu Chuan Weng; Jing Ru Weng; Chang Shi Chen; Robert W. Brueggemeier; Charles L. Shapiro; Ching Yu Chen; Sandra E. Dunn; Michael Pollak; Ching-Shih Chen

Although trastuzumab has been successfully used in patients with HER2-overexpressing metastatic breast cancer, resistance is a common problem that ultimately culminates in treatment failure. In light of the importance of Akt signaling in trastuzumabs antitumor action, we hypothesized that concurrent inhibition of Akt could enhance trastuzumab sensitivity and moreover reverse the resistant phenotype in HER2-positive breast cancer cells. Based on our finding that celecoxib mediates antitumor effects through the inhibition of phosphoinositide-dependent kinase-1 (PDK-1)/Akt signaling independently of cyclooxygenase-2 (COX-2), we used celecoxib as a scaffold to develop a COX-2-inactive PDK-1 inhibitor, 2-amino-N-[4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-acetamide (OSU-03012). Here, we investigated the effect of OSU-03012 on trastuzumab-mediated apoptosis in four breast cancer cell lines with different HER2 expression and trastuzumab-resistance status, including MDA-MB-231, BT474, SKBR3, and insulin-like growth factor-I receptor-overexpressing SKBR3 (SKBR3/IGF-IR). Effects of trastuzumab and OSU-03012, individually or in combination, on cell viability and changes in pertinent biomarkers including HER2 expression, phosphorylation of Akt, p27kip1, and the PDK-1 substrate p70S6K were assessed. OSU-03012 alone was able to trigger apoptosis in all cell lines with equal potency (IC50 = 3-4 μM), suggesting no cross-resistance with trastuzumab. Medium dose-effect analysis indicates that OSU-03012 potentiated trastuzumabs antiproliferative effect in HER2-positive cells, especially in SKBR3/IGF-IR cells, through the down-regulation of PDK-1/Akt signaling. This synergy, however, was not observed in HER2-negative MDA-MB-231 cells. This combination treatment represents a novel strategy to increase the efficacy of trastuzumab and to overcome trastuzumab resistance in the treatment of HER2-positive breast cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin

Haopeng Wang; Atsushi Matsuzawa; Scott A. Brown; Jingran Zhou; Cliff Guy; Ping-Hui Tseng; Karen Forbes; Thomas P. Nicholson; Paul W. Sheppard; Hans Häcker; Michael Karin; Dario A. A. Vignali

Modification of proteins by the addition of lysine (K)-63-linked polyubiquitin (polyUb) chains is suggested to play important roles in a variety of cellular events, including DNA repair, signal transduction, and receptor endocytosis. However, identifying such modifications in living cells is complex and cumbersome. We have generated a monoclonal antibody (mAb) that specifically recognizes K63-linked polyUb, but not any other isopeptide-linked (K6, K11, K27, K29, K33, or K48) polyUb or monoubiquitin. We demonstrate the sensitivity and specificity of this K63Ub-specific mAb to detect K63Ub-modified proteins in cell lysates by Western blotting and in cells by immunofluorescence, and K63Ub-modified TRAF6 and MEKK1 in vitro and ex vivo. This unique mAb will facilitate the analysis of K63-linked polyubiquitylation ex vivo and presents a strategy for the generation of similar reagents against other forms of polyUb.

Collaboration


Dive into the Ping-Hui Tseng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Karin

University of California

View shared research outputs
Top Co-Authors

Avatar

Ho Pi Lin

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Chang Shi Chen

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Dario A. A. Vignali

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuen-Feng Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Haopeng Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge