Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ping-Kuei Liao is active.

Publication


Featured researches published by Ping-Kuei Liao.


Journal of the American Chemical Society | 2013

A Nanospheric Polyhydrido Copper Cluster of Elongated Triangular Orthobicupola Array: Liberation of H2 from Solar Energy

Rajendra S. Dhayal; Jian-Hong Liao; Yan-Ru Lin; Ping-Kuei Liao; Samia Kahlal; Jean-Yves Saillard; C. W. Liu

An unprecedented air-stable, nanospheric polyhydrido copper cluster, [Cu20H11(S2P(O(i)Pr)2)9] (1H), which is the first example of an elongated triangular orthobicupola array of Cu atoms having C3h symmetry, was synthesized and characterized. Its composition was primarily determined by electrospray ionization mass spectrometry, and it was fully characterized by (1)H, (2)H, and (31)P NMR spectroscopy and single-crystal X-ray diffraction (XRD). The structure of complex 1H can be expressed in terms of a trigonal-bipyramidal [Cu2H5](3-) unit anchored within an elongated triangular orthobicupola containing 18 Cu atoms, which is further stabilized by 18 S atoms from nine dithiophosphate ligands and six capping hydrides. The positions of the 11 hydrides revealed by low temperature XRD were supported by a density functional theory investigation on the simplified model [Cu20H11(S2PH2)9] with C3h symmetry. 1H is capable of releasing H2 gas upon irradiation with sunlight, under mild thermal conditions (65 °C), or in the presence of acids at room temperature.


Angewandte Chemie | 2014

Chinese Puzzle Molecule: A 15 Hydride, 28 Copper Atom Nanoball

Alison J. Edwards; Rajendra S. Dhayal; Ping-Kuei Liao; Jian-Hong Liao; Ming-Hsi Chiang; Ross O. Piltz; Samia Kahlal; Jean-Yves Saillard; C. W. Liu

The syntheses of the first rhombicuboctahedral copper polyhydride complexes [Cu28 (H)15 (S2 CNR)12 ]PF6 (NR=N(n) Pr2 or aza-15-crown-5) are reported. These complexes were analyzed by single-crystal X-ray and one by neutron diffraction. The core of each copper hydride nanoparticle comprises one central interstitial hydride and eight outer-triangular-face-capping hydrides. A further six face-truncating hydrides form an unprecedented bridge between the inner and outer copper atom arrays. The irregular inner Cu4 tetrahedron is encapsulated within the Cu24 rhombicuboctahedral cage, which is further enclosed by an array of twelve dithiocarbamate ligands that subtends the truncated octahedron of 24 sulfur atoms, which is concentric with the Cu24 rhombicuboctahedron and Cu4 tetrahedron about the innermost hydride. For these compounds, an intriguing, albeit limited, H2 evolution was observed at room temperature, which is accompanied by formation of the known ion [Cu8 (H)(S2 CNR)6 ](+) upon exposure of solutions to sunlight, under mild thermolytic conditions, and on reaction with weak (or strong) acids.


Inorganic Chemistry | 2012

Hydrido copper clusters supported by dithiocarbamates: oxidative hydride removal and neutron diffraction analysis of [Cu7(H){S2C(aza-15-crown-5)}6].

Ping-Kuei Liao; Ching-Shiang Fang; Alison J. Edwards; Samia Kahlal; Jean-Yves Saillard; C. W. Liu

Reactions of Cu(I) salts with Na(S(2)CR) (R = N(n)Pr(2), NEt(2), aza-15-crown-5), and (Bu(4)N)(BH(4)) in an 8:6:1 ratio in CH(3)CN solution at room temperature yield the monocationic hydride-centered octanuclear Cu(I) clusters, [Cu(8)(H){S(2)CR}(6)](PF(6)) (R = N(n)Pr(2), 1(H); NEt(2), 2(H); aza-15-crown-5, 3(H)). Further reactions of [Cu(8)(H){S(2)CR}(6)](PF(6)) with 1 equiv of (Bu(4)N)(BH(4)) produced neutral heptanuclear copper clusters, [Cu(7)(H){S(2)CR}(6)] (R = N(n)Pr(2), 4(H); NEt(2), 5(H); aza-15-crown-5, 6(H)) and clusters 4-6 can also be generated from the reaction of Cu(BF(4))(2), Na(S(2)CR), and (Bu(4)N)(BH(4)) in a 7:6:8 molar ratio in CH(3)CN. Reformation of cationic Cu(I)(8) clusters by adding 1 equiv of Cu(I) salt to the neutral Cu(7) clusters in solution is observed. Intriguingly, the central hydride in [Cu(8)(H){S(2)CN(n)Pr(2)}(6)](PF(6)) can be oxidatively removed as H(2) by Ce(NO(3))(6)(2-) to yield [Cu(II)(S(2)CN(n)Pr(2))(2)] exploiting the redox-tolerant nature of dithiocarbamates. Regeneration of hydride-centered octanuclear copper clusters from the [Cu(II)(S(2)CN(n)Pr(2))(2)] can be achieved by reaction with Cu(I) ions and borohydride. The hydride release and regeneration of Cu(I)(8) was monitored by UV-visible titration experiments. To our knowledge, this is the first time that hydride encapsulated within a copper cluster can be released as H(2) via chemical means. All complexes have been fully characterized by (1)H NMR, FT-IR, UV-vis, and elemental analysis, and molecular structures of 1(H), 2(H), and 6(H) were clearly established by single-crystal X-ray diffraction. Both 1(H) and 2(H) exhibit a tetracapped tetrahedral Cu(8) skeleton, which is inscribed within a S(12) icosahedron constituted by six dialkyl dithiocarbamate ligands in a tetrametallic-tetraconnective (μ(2), μ(2)) bonding mode. The copper framework of 6(H) is a tricapped distorted tetrahedron in which the four-coordinate hydride is demonstrated to occupy the central site by single crystal neutron diffraction. Compounds 1-3 exhibit a yellow emission in both the solid state and in solution under UV irradiation at 77 K, and the structureless emission is assigned as a (3)metal to ligand charge transfer (MLCT) excited state. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations on model compounds match the experimental structures and provide rationalization of their bonding and optical properties.


Inorganic Chemistry | 2009

Facile Entrapment of a Hydride inside the Tetracapped Tetrahedral CuI8 Cage Inscribed in a S12 Icosahedral Framework

Ping-Kuei Liao; Bijay Sarkar; Hao-Wei Chang; Ju-Chun Wang; C. W. Liu

Reaction of [Cu(CH(3)CN)(4)](PF(6)) and NH(4)[S(2)P(OR)(2)] in a 4:3 ratio in acetone at room temperature produces octanuclear dicationic copper complexes [Cu(8){S(2)P(OR)(2)}(6)](PF(6))(2) (R = (i)Pr, 1; Et, 3) in 81 and 83% yields, respectively. On the other hand, reaction of [Cu(CH(3)CN)(4)](PF(6)), NH(4)[S(2)P(OR)(2)], and NaBH(4) in an 8:6:1 molar ratio in THF for 1 h yields [Cu(4)(H)(mu(3)-Cu)(4){S(2)P(OR)(2)}(6)](PF(6)) (R = (i)Pr, 2a; Et, 4a) in 87 and 82% yields, respectively. In a similar reaction when NaBD(4) is used instead of NaBH(4), [Cu(4)(D)(mu(3)-Cu)(4){S(2)P(OR)(2)}(6)](PF(6)) (R = (i)Pr, 2b; Et, 4b) are obtained in 83 and 78% yields, respectively. Structural elucidations of 2a and 4a reveal the tetracapped tetrahedral Cu(8) cage with an interstitial hydride. Each of the Cu(I) centers is trigonally coordinated by three S atoms, and each of the six dithiophosphate ligands is connected to a Cu(4) butterfly, where the hinge positions are occupied by two copper atoms situated at the vertex of the central tetrahedron and the wingtips are two capping Cu atoms. The 12 S atoms out of the six ligands constitute an icosahedron around the hydride-centered tetracapped tetrahedral Cu(8) framework. Surprisingly, empty Cu(8) clusters 1 and 3 can abstract hydride (or deuteride) from NaBH(4) (or NaBD(4)) in THF to form 2a and 4a (or 2b and 4b), respectively. Apparently the cubic Cu(8) core, which is known to be formed in the reaction of Cu(I) salt and dichalcogenophosph(in)ate ligands, undergoes a tetrahedral contraction due to the strong Cu...H interactions. Interestingly, the chloride can also be replaced from the chloride-centered Cu(8) complex of [Cu(8)(Cl){S(2)P(OEt)(2)}(6)](PF(6)) by hydride (or deuteride) to form 2a and 4a (or 2b and 4b). However, the hydride- and deuteride-centered compounds 2a,b and 4a,b do not allow the guest exchange.


Inorganic Chemistry | 2013

Shape Modulation of Octanuclear Cu(I) or Ag(I) Dichalcogeno Template Clusters with Respect to the Nature of their Encapsulated Anions: A Combined Theoretical and Experimental Investigation

Camille Latouche; Samia Kahlal; Eric Furet; Ping-Kuei Liao; Yan-Ru Lin; Ching-Shiang Fang; Jeŕo ̂me Cuny; C. W. Liu; Jean-Yves Saillard

M8L6 clusters (M = Cu(I), Ag(I); L = dichalcogeno ligand) are known for their ability to encapsulate various kinds of saturated atomic anions. Calculations on the models [M8(E2PH2)6](2+) (M = Cu(I), Ag(I); E = S, Se) and the ionic or neutral [M8(X)(E2PH2)6](q) (X = H, F, Cl, Br, O, S, Se, N, P, C) indicate that the cubic M8L6 cage adapts its shape for maximizing the host-guest bonding interaction. The interplay between size, covalent and ionic bonding favors either a cubic, tetracapped tetrahedral, or bicapped octahedral structure of the metal framework. Whereas the large third- and fourth-row main group anions maintain the cubic shape, a distortion toward a tetracapped tetrahedral arrangement of the metals occurs in the case of hydride, fluoride, and oxide. The distortion is strong in the case of hydride, weak in the case of fluoride, and intermediate in the case of oxide. Density functional theory (DFT) calculations predict a bicapped octahedral architecture in the case of nitride and carbide. These computational results are supported by X-ray structures, including those of new fluorine- and oxygen-containing compounds. It is suggested that other oxygen-containing as well as so far unknown nitride-containing clusters should be feasible. For the first time, the dynamical behavior of the encapsulated hydride has been investigated by metadynamics simulations. Our results clearly demonstrate that the interconversion mechanism between two identical tetracapped tetrahedral configurations occurs through a succession of M-H bonds breaking and forming which present very low activation energies and which involve a rather large number of intermediate structures. This mechanism is full in accordance with (109)Ag and (1)H state NMR measurements.


Inorganic Chemistry | 2011

A Copper(I) Homocubane Collapses to a Tetracapped Tetrahedron Upon Hydride Insertion

Ping-Kuei Liao; Kuan-Guan Liu; Ching-Shiang Fang; C. W. Liu; John P. Fackler; Ying-Yann Wu

The hydrido copper(I) and silver(I) clusters incorporating 1,1-dicyanoethylene-2,2-dithiolate (i-MNT) ligands are presented in this paper. Reactions of M(I) (M = Cu, Ag) salts, [Bu(4)N](2)[S(2)CC(CN)(2)], with the anion sources ([Bu(4)N][BH(4)] for H(-), [Bu(4)N][BD(4)] for D(-)) in an 8:6:1 molar ratio in THF produce octanuclear penta-anionic Cu(I)/Ag(I) clusters, [Bu(4)N](5)[M(8)(X){S(2)CC(CN)(2)}(6)] (M = Cu, X = H, 1(H); X = D, 1(D); M = Ag, X = H, 2(H); X = D, 2(D)). They can also be produced from the stoichiometric reaction of M(8)(i-MNT)(6)(4-) with the ammonium borohydride. All four compounds have been fully characterized spectroscopically ((1)H and (13)C NMR, IR, UV-vis) and by elemental analyses. The deuteride-encapsulated Cu(8)/Ag(8) clusters of 1(D) and 2(D) are also characterized by (2)H NMR. X-ray crystal structures of 1(H) and 2(H) reveal a hydride-centered tetracapped tetrahedral Cu(8)/Ag(8) core, which is inscribed within an S(12) icosahedron formed by six i-MNT ligands, each in a tetrametallic-tetraconnective (μ(2), μ(2)) bonding mode. The encapsulated hydride in 2(H) is unequivocally characterized by both (1)H and (109)Ag NMR spectroscopies, and the results strongly suggest that the hydride is coupled to eight magnetically equivalent silver nuclei on the NMR time scale. Therefore, a fast interchange between the vertex and capping silver atoms in solution gives a plausible explanation for the perceived structural differences between the Ag(8) geometry deduced from the X-ray structure and the NMR spectra.


Journal of the American Chemical Society | 2009

Octanuclear Copper(I) Clusters Inscribed in a Se12 Icosahedron: Anion-Induced Modulation of the Core Size and Symmetry

C. W. Liu; Bijay Sarkar; Yao-Jheng Huang; Ping-Kuei Liao; Ju-Chun Wang; Jean-Yves Saillard; Samia Kahlal


Chemical Communications | 2011

An eleven-vertex deltahedron with hexacapped trigonal bipyramidal geometry

C. W. Liu; Ping-Kuei Liao; Ching-Shiang Fang; Jean-Yves Saillard; Samia Kahlal; Ju-Chun Wang


European Journal of Inorganic Chemistry | 2012

Facile Self‐Assembly Synthesis and Characterization of Diselenophosphinato Octanuclear CuI Clusters Inscribed in a Twelve‐Vertex Selenium Polyhedron

Ping-Kuei Liao; De-Ren Shi; Jian-Hong Liao; C. W. Liu; Alexander V. Artem'ev; Vladimir A. Kuimov; N. K. Gusarova; B. A. Trofimov


Inorganic Chemistry | 2009

Conjugate Base of a Secondary Phosphine Selenide [P(Se)(OiPr)2]− as the Bridging Unit for the Construction of Heterometallic Fe(II)−Hg(II)/Cd(II) Complexes

Bijay Sarkar; Sung-Yin Wen; Jyun-Hua Wang; Ling-Song Chiou; Ping-Kuei Liao; Bidyut Kumar Santra; Ju-Chun Wang; C. W. Liu

Collaboration


Dive into the Ping-Kuei Liao's collaboration.

Top Co-Authors

Avatar

C. W. Liu

National Dong Hwa University

View shared research outputs
Top Co-Authors

Avatar

Jean-Yves Saillard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Samia Kahlal

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ching-Shiang Fang

National Dong Hwa University

View shared research outputs
Top Co-Authors

Avatar

Jian-Hong Liao

National Dong Hwa University

View shared research outputs
Top Co-Authors

Avatar

Rajendra S. Dhayal

National Dong Hwa University

View shared research outputs
Top Co-Authors

Avatar

Alison J. Edwards

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross O. Piltz

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar

Vladimir A. Kuimov

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge