Pingkun Yan
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pingkun Yan.
IEEE Transactions on Geoscience and Remote Sensing | 2013
Xiaoqiang Lu; Hao Wu; Yuan Yuan; Pingkun Yan; Xuelong Li
Hyperspectral unmixing is one of the most important techniques in analyzing hyperspectral images, which decomposes a mixed pixel into a collection of constituent materials weighted by their proportions. Recently, many sparse nonnegative matrix factorization (NMF) algorithms have achieved advanced performance for hyperspectral unmixing because they overcome the difficulty of absence of pure pixels and sufficiently utilize the sparse characteristic of the data. However, most existing sparse NMF algorithms for hyperspectral unmixing only consider the Euclidean structure of the hyperspectral data space. In fact, hyperspectral data are more likely to lie on a low-dimensional submanifold embedded in the high-dimensional ambient space. Thus, it is necessary to consider the intrinsic manifold structure for hyperspectral unmixing. In order to exploit the latent manifold structure of the data during the decomposition, manifold regularization is incorporated into sparsity-constrained NMF for unmixing in this paper. Since the additional manifold regularization term can keep the close link between the original image and the material abundance maps, the proposed approach leads to a more desired unmixing performance. The experimental results on synthetic and real hyperspectral data both illustrate the superiority of the proposed method compared with other state-of-the-art approaches.
IEEE Transactions on Systems, Man, and Cybernetics | 2013
Qi Wang; Yuan Yuan; Pingkun Yan; Xuelong Li
Saliency detection has been a hot topic in recent years. Its popularity is mainly because of its theoretical meaning for explaining human attention and applicable aims in segmentation, recognition, etc. Nevertheless, traditional algorithms are mostly based on unsupervised techniques, which have limited learning ability. The obtained saliency map is also inconsistent with many properties of human behavior. In order to overcome the challenges of inability and inconsistency, this paper presents a framework based on multiple-instance learning. Low-, mid-, and high-level features are incorporated in the detection procedure, and the learning ability enables it robust to noise. Experiments on a data set containing 1000 images demonstrate the effectiveness of the proposed framework. Its applicability is shown in the context of a seam carving application.
computer vision and pattern recognition | 2012
Xiaoqiang Lu; Haoliang Yuan; Pingkun Yan; Yuan Yuan; Xuelong Li
The choice of the over-complete dictionary that sparsely represents data is of prime importance for sparse coding-based image super-resolution. Sparse coding is a typical unsupervised learning method to generate an over-complete dictionary. However, most of the sparse coding methods for image super-resolution fail to simultaneously consider the geometrical structure of the dictionary and corresponding coefficients, which may result in noticeable super-resolution reconstruction artifacts. In this paper, a novel sparse coding method is proposed to preserve the geometrical structure of the dictionary and the sparse coefficients of the data. Moreover, the proposed method can preserve the incoherence of dictionary entries, which is critical for sparse representation. Inspired by the development on non-local self-similarity and manifold learning, the proposed sparse coding method can provide the sparse coefficients and learned dictionary from a new perspective, which have both reconstruction and discrimination properties to enhance the learning performance. Extensive experimental results on image super-resolution have demonstrated the effectiveness of the proposed method.
IEEE Transactions on Systems, Man, and Cybernetics | 2014
Xiaoqiang Lu; Yuan Yuan; Pingkun Yan
Dictionaries are crucial in sparse coding-based algorithm for image superresolution. Sparse coding is a typical unsupervised learning method to study the relationship between the patches of high-and low-resolution images. However, most of the sparse coding methods for image superresolution fail to simultaneously consider the geometrical structure of the dictionary and the corresponding coefficients, which may result in noticeable superresolution reconstruction artifacts. In other words, when a low-resolution image and its corresponding high-resolution image are represented in their feature spaces, the two sets of dictionaries and the obtained coefficients have intrinsic links, which has not yet been well studied. Motivated by the development on nonlocal self-similarity and manifold learning, a novel sparse coding method is reported to preserve the geometrical structure of the dictionary and the sparse coefficients of the data. Moreover, the proposed method can preserve the incoherence of dictionary entries and provide the sparse coefficients and learned dictionary from a new perspective, which have both reconstruction and discrimination properties to enhance the learning performance. Furthermore, to utilize the model of the proposed method more effectively for single-image superresolution, this paper also proposes a novel dictionary-pair learning method, which is named as two-stage dictionary training. Extensive experiments are carried out on a large set of images comparing with other popular algorithms for the same purpose, and the results clearly demonstrate the effectiveness of the proposed sparse representation model and the corresponding dictionary learning algorithm.
IEEE Transactions on Circuits and Systems for Video Technology | 2013
Xiaoqiang Lu; Yuan Yuan; Pingkun Yan
Over the past few years, high resolutions have been desirable or essential, e.g., in online video systems, and therefore, much has been done to achieve an image of higher resolution from the corresponding low-resolution ones. This procedure of recovering/rebuilding is called single-image super-resolution (SR). Performance of image SR has been significantly improved via methods of sparse coding. That is to say, the image frame patch can be sparse linear combinations of basis elements. However, most of these existing methods fail to consider the local geometrical structure in the space of the training data. To take this crucial issue into account, this paper proposes a method named double sparsity regularized manifold learning (DSRML). DSRML can preserve the properties of the aforementioned local geometrical structure by employing manifold learning, e.g., locally linear embedding. Based on a large amount of experimental results, DSRML is demonstrated to be more robust and more effective than previous efforts in the task of single-image SR.
IEEE Transactions on Circuits and Systems for Video Technology | 2013
Qi Wang; Yuan Yuan; Pingkun Yan
Automatic detection of salient objects in visual media (e.g., videos and images) has been attracting much attention. The detected salient objects can be utilized for segmentation, recognition, and retrieval. However, the accuracy of saliency detection remains a challenge. The reason behind this challenge is mainly due to the lack of a well-defined model for interpreting saliency formulation. To tackle this problem, this letter proposes to detect salient objects based on selective contrast. Selective contrast intrinsically explores the most distinguishable component information in color, texture, and location. A large number of experiments are thereafter carried out upon a benchmark dataset, and the results are compared with those of 12 other popular state-of-the-art algorithms. In addition, the advantage of the proposed algorithm is also demonstrated in a retargeting application.
international conference on image processing | 2011
Xianbin Cao; Changxia Wu; Pingkun Yan; Xuelong Li
Visual surveillance from low-altitude airborne platforms has been widely addressed in recent years. Moving vehicle detection is an important component of such a system, which is a very challenging task due to illumination variance and scene complexity. Therefore, a boosting Histogram Orientation Gradients (boosting HOG) feature is proposed in this paper. This feature is not sensitive to illumination change and shows better performance in characterizing object shape and appearance. Each of the boosting HOG feature is an output of an adaboost classifier, which is trained using all bins upon a cell in traditional HOG features. All boosting HOG features are combined to establish the final feature vector to train a linear SVM classifier for vehicle classification. Compared with classical approaches, the proposed method achieved better performance in higher detection rate, lower false positive rate and faster detection speed.
IEEE Transactions on Circuits and Systems for Video Technology | 2011
Xianbin Cao; Changxia Wu; Jinhe Lan; Pingkun Yan; Xuelong Li
Visual surveillance from low-altitude airborne platforms plays a key role in urban traffic surveillance. Moving vehicle detection and motion analysis are very important for such a system. However, illumination variance, scene complexity, and platform motion make the tasks very challenging. In addition, the used algorithms have to be computationally efficient in order to be used on a real-time platform. To deal with these problems, a new framework for vehicle detection and motion analysis from low-altitude airborne videos is proposed. Our paper has two major contributions. First, to speed up feature extraction and to retain additional global features in different scales for higher classification accuracy, a boosting light and pyramid sampling histogram of oriented gradients feature extraction method is proposed. Second, to efficiently correlate vehicles across different frames for vehicle motion trajectories computation, a spatio-temporal appearance-related similarity measure is proposed. Compared to other representative existing methods, our experimental results showed that the proposed method is able to achieve better performance with higher detection rate, lower false positive rate, and faster detection speed.
Pattern Recognition | 2013
Xiaoqiang Lu; Yuan Yuan; Pingkun Yan
Recently, sparse representation in the task of visual tracking has been obtained increasing attention and many algorithms are proposed based on it. In these algorithms for visual tracking, each candidate target is sparsely represented by a set of target templates. However, these algorithms fail to consider the structural information of the space of the target templates, i.e., target template set. In this paper, we propose an algorithm named non-local self-similarity (NLSS) based sparse coding algorithm (NLSSC) to learn the sparse representations, which considers the geometrical structure of the set of target candidates. By using non-local self-similarity (NLSS) as a smooth operator, the proposed method can turn the tracking into sparse representations problems, in which the information of the set of target candidates is exploited. Extensive experimental results on visual tracking have demonstrated the effectiveness of the proposed algorithm.
medical image computing and computer assisted intervention | 2011
Yihui Cao; Yuan Yuan; Xuelong Li; Baris Turkbey; Peter L. Choyke; Pingkun Yan
Atlas selection and combination are two critical factors affecting the performance of atlas-based segmentation methods. In the existing works, those tasks are completed in the original image space. However, the intrinsic similarity between the images may not be accurately reflected by the Euclidean distance in this high-dimensional space. Thus, the selected atlases may be away from the input image and the generated template by combining those atlases for segmentation can be misleading. In this paper, we propose to select and combine atlases by projecting the images onto a low-dimensional manifold. With this approach, atlases can be selected according to their intrinsic similarity to the patient image. A novel method is also proposed to compute the weights for more efficiently combining the selected atlases to achieve better segmentation performance. The experimental results demonstrated that our proposed method is robust and accurate, especially when the number of training samples becomes large.