Pingliang Li
China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pingliang Li.
Journal of Chromatography B | 2009
Tao Tang; Tianyu Shi; Kun Qian; Pingliang Li; Jianqiang Li; Yongsong Cao
Eighteen samples of commercially available Chinese beer were analyzed in order to determine the content of biogenic amines. The method involves pre-column derivatization of the amines with 4-chloro-3,5-dinitrobenzotrifluoride (CNBF) and subsequent analysis by RP-HPLC (reversed phase-high performance liquid chromatography) with diode array detection. The labeled biogenic amines were separated on a Kromasil C18 column (250mmx4.6mm, 5microm) at room temperature and UV detection was applied at 254nm. The separation of seven labeled biogenic amines was achieved within 22min by elution acetonitrile and HAc-NaAc buffers. The method linearity, calculated for each biogenic amine, has a correlation coefficient higher than 0.9925, in concentrations ranging from 2.9micromolL(-1) to 565micromolL(-1). Detection limits of biogenic amines were 0.056-0.87micromolL(-1), at a signal-to-noise ratio of 3. The proposed method has been applied to the quantitative determination of spermine, phenethylamine, spermidine, histamine, tyramine, tryptamine and putrescine in beer with recoveries of 91.9-103.1% and R.S.D. of 2.86-5.63%. Quantitation is relative to external standards. The results showed that each kind of beer examined contained at least three biogenic amines. Putrescine, histamine and tyramine were detected in all samples. Spermidine was detected in 89% of the beers. Spermine, tryptamine and phenylethylamine occurred in 78%, 61% and 44% of the beers examined, respectively. These levels were below the level that may elicit direct adverse reactions for most consumers.
Journal of Agricultural and Food Chemistry | 2014
Wenbing Zhang; Pingliang Li; Qianqian Geng; Yongheng Duan; Mingcheng Guo; Yongsong Cao
Biologically active low-molecular-mass thiols, mainly including glutathione (GSH), cysteine (Cys), homocysteine (Hcy), and cysteinylglycine (Cys-Gly), are important physiological components in biological fluids, and their analytical methods have gained continuous attention over recent years. We developed and validated a novel HPLC method for the quantification of GSH, Cys, Hcy, and Cys-Gly in human plasma, urine, and saliva using 4-chloro-3,5-dinitrobenzotrifluoride as the derivatization reagent. Analyses were linear from 0.15 to 500 μM with the coefficient regression range of 0.9987-0.9994. Detection limits ranged from 0.04 to 0.08 μM (S/N=3). The developed method was applied to quantification of four thiols in human biological fluids collected from five donors with the concentration range of 2.50-124.25 μM, 0-72.81 μM, and 0-4.25 μM for plasma, urine, and saliva, respectively. The present method seemed to be an attractive choice for the determination of thiols in plasma, urine, and saliva.
Nanotechnology | 2013
Mingming Ao; Yuncong Zhu; Shun He; Deguang Li; Pingliang Li; Jianqiang Li; Yongsong Cao
Chemical pesticides have been widely used to increase the yield and quality of agricultural products as they are efficient, effective, and easy to apply. However, the rapid degradation and low utilization ratio of conventional pesticides has led to environmental pollution and resource waste. Nano-sized controlled-release formulations (CRFs) can provide better penetration through the plant cuticle and deliver the active ingredients efficiently to the targeted tissue. In this paper we reported novel conjugated nanospheres derived from 1-naphthylacetic acid (NNA), 3-aminopropyltriethoxysilane (APTES) and tetraethyl orthosilicate and their application as a controlled-release plant growth regulator. The NNA and APTES conjugate was prepared through a covalent cross-linking reaction and subsequent hydrolyzation and polycondensation to synthesize NNA-silica nanospheres. The release data indicated that the release of NNA was by non-Fickian transport and increased as particle size decreased. It was also found that the acidity-alkalinity was enhanced and as the temperature increased, the release of the active ingredient was faster. The nanoconjugate displayed a better efficacy in promoting root formation than NNA technical. The present study provides a novel synthesis route for CRFs comprising a pesticide, with long-duration sustained-release performance and good environmental compatibility. This method may be extended to other pesticides that possess a carboxyl group.
Journal of Materials Chemistry B | 2013
Shun He; Wenbing Zhang; Deguang Li; Pingliang Li; Yuncong Zhu; Mingming Ao; Jianqiang Li; Yongsong Cao
Controlled release formulation (CRF) of pesticides is highly desirable for attaining the most effective utilization of the pesticide as well as reducing environmental pollution. Due to the selective permeation and protection properties of the semi-permeable membrane, pesticide microcapsules have been widely used. In this work, we developed a novel two-step method for synthesizing highly stable silica-glutaraldehyde-chitosan composite avermectin microcapsules. The silica shell was formed through the hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) at the oil droplet-water interface by using TEOS as the silica precursor and hexadecyl trimethyl ammonium chloride as a surfactant. Then the silica shell was modified with 3-aminopropyltriethoxysilane. Chitosan nanospheres were prepared by adjusting the pH value of the solution and then cross-linking with modified silica at the surface of the silica shell in the presence of glutaraldehyde to form double-shelled avermectin microcapsules. The results showed that the resulting microcapsules had a remarkable loading ability for avermectin (about 40% w/w) and can protect avermectin against photo- and thermal degradation effectively. Compared to single-shelled microcapsules, the double-shelled ones had better controlled release properties under all conditions. The present study provides a novel CRF comprising a pesticide which is light-sensitive or high temperature-sensitive, and a method for preparing the improved pesticide formulation so that the pesticide release rate and release period could be adjusted.
Journal of Separation Science | 2009
Kun Qian; Tao Tang; Tianyu Shi; Pingliang Li; Jianqiang Li; Yongsong Cao
A new method for glyphosate residue determination in apple has been developed. A SPE cartridge was used to clean up the samples before derivatization. Glyphosate was derivatized with 4-chloro-3,5-dinitrobenzotrifluoride (CNBF) and quantified by reverse ion-pair liquid chromatography using cetyltrimethylammonium bromide (CTAB) as ion-pair reagent. In pH 9.5 H(3)BO(3)-Na(2)B(4)O(7) medium, the reaction of glyphosate with CNBF was complete after 30 min at 60 degrees C. The stability of the derivative on exposure to light at room temperature in methanol-water was demonstrated. The labeled glyphosate was separated on a Kromasil C(18) column (250 x 4.6 mm, 5 microm) at room temperature and UV detection was applied at 360 nm. Separation was achieved within 15 min in gradient elution mode. The correlation coefficient for the method was 0.9998 at concentrations ranging from 0.1 to 50 microg/g. The calculated recoveries for glyphosate in apple were from 86.00 to 99.55%, and the relative standard deviations (n = 6) were from 1.43 to 6.32. The limit of detection was 0.01 microg/g for glyphosate in apple.
Journal of Agricultural and Food Chemistry | 2012
Pingliang Li; Yuncong Zhu; Shun He; Jiqiao Fan; Qiongbo Hu; Yongsong Cao
Diacetyl is a natural byproduct of fermentation and known to be an important flavor compound in many food products. Because of the potential undesirable effects of diacetyl on health safety and beer flavor, determination of its concentration in beer samples is essential and its analytical methods have attracted close attention recently. The aim of the present work is to develop and validate a novel high-performance liquid chromatography method for the quantification of diacetyl in beer based on the derivatization reaction of diacetyl with 4-nitro-o-phenylenediamine (NPDA). After the derivatization with NPDA in pH 3.0 at 45 °C for 20 min, diacetyl was separated on a kromasil C(18) column at room temperature in the form of the resulting 6-nitro-2,3-dimethylquinoxaline and detected by the ultraviolet detector at 257 nm. The results showed that the correlation coefficient for the method was 0.9992 in the range of 0.0050-10.0 mg L(-1) and the limit of detection was 0.0008 mg L(-1) at a signal-to-noise ratio of 3. The applicability of the proposed method was evaluated in the analysis of beer samples with the recovery range of 94.0-99.0% and relative standard deviation range of 1.20-3.10%. The concentration levels of diacetyl detected in beer samples from 12 brands ranged from 0.034 to 0.110 mg L(-1). The proposed method showed efficient chromatographic separation, excellent linearity, and good repeatability that can be applied to quantification of diacetyl in beer samples.
Chemosphere | 2012
Tao Tang; Kun Qian; Tianyu Shi; Fang Wang; Pingliang Li; Jianqiang Li; Yongsong Cao
Quinestrol is synthetic estrogen used in contraceptive and hormone replacement therapy and occasionally for treating breast cancer and prostate cancer. It can make its way into the environment through sewage discharge and waste disposal produced by human excretions. In this study, the photodegradation kinetics of quinestrol in various conditions was investigated by UV and solar irradiation. The affecting factors were studied including concentration of hydrogen peroxide, different water types, and the initial concentrations of quinestrol. Concurrently, the transformation products and presumed pathways of quinestrol in distilled water by UV irradiation were identified and proposed. The results showed that the degradation of quinestrol in both irradiation conditions followed the pseudo-first-order kinetics. More rapid degradation was observed by UV irradiation (k=0.018 min(-1)) than solar irradiation (k=0.004 h(-1)), and the photodegradation rate of quinestrol depended on the concentration of hydrogen peroxide, the initial concentration of quinestrol and water types. The transformation products of quinestrol in distilled water were identified by gas chromatography/mass spectrometry. When exposed to UV irradiation, quinestrol in aqueous solution was rapidly degraded, giving at least ten photodegradation products. The chemical structures of ten degradation products were identified on the basis of mass spectrum interpretation and literature data.
Biomedical Chromatography | 2009
Tao Tang; Pingliang Li; Laixin Luo; Dazhao Shi; Jianqiang Li; Yongsong Cao
Levonorgestrel and quinestrol, commonly known as EP-1, has long been used in the control of wild rodents. Up to the present time, however, no method for simultaneous quantification of levonorgestrel and quinestrol in rat plasma has been reported. In the present study, a sensitive reverse-phase high-performance liquid chromatography with ultraviolet detection (RP-HPLC-UV) method for quantification of levonorgestrel and quinestrol in rat plasma has been developed. It uses a Kromasil ODS C(18) column and acetonitrile-0.1% formic acid (85 : 15, v/v) mobile phase at ambient temperature. The plasma sample was prepared by hexane-isoamyl alcohol extraction (90 : 10, v/v). The flow rate and detection wavelength were 1.0 mL/min and 230 nm. The correlation coefficients were greater than 0.9995 within 0.08-50 microg/mL for levonorgestrel and 0.12-50 microg/mL for quinestrol, and the limits of detection were 0.02 and 0.05 microg/mL for levonorgestrel and quinestrol, respectively. Average recovery ranged from 92.5 to 96.3% and inter-day RSDs were less than 7.56%. This method can be applied to the further pharmacokinetic study of levonorgestrel and quinestrol in rat plasma.
Pest Management Science | 2012
Pingliang Li; Shun He; Tao Tang; Kun Qian; Hanwen Ni; Yongsong Cao
BACKGROUND Glyphosate is a non-selective, foliar-applied, systemic herbicide that kills weeds by inhibiting the synthesis of 5-enolpyruvylshikimate-3-phosphate synthase. Urea phosphate (UPP), made by the reaction of urea with phosphoric acid, was applied as an adjuvant for glyphosate in this study. Experiments in the greenhouse and the field were conducted to determine the effects of UPP by comparing the efficacies of glyphosate plus UPP, glyphosate plus 1-aminomethanamide dihydrogen tetraoxosulfate (AMADS) and Roundup. RESULTS The optimum concentration of UPP in glyphosate solution was 2.0% when UPP was used as an adjuvant. The ED50 values for glyphosate-UPP were 291.7 and 462.4 g AI ha(-1) in the greenhouse and the field respectively, while the values for Roundup were 448.2 and 519.6 g AI ha(-1). The ED50 values at 2 weeks after treatment (WAT) and 3 WAT were lowered when UPP was used as an adjuvant in the greenhouse and field study, and the glyphosate+UPP was absorbed over a 2 week period. UPP may increase the efficacy by causing severe cuticle disruption or accelerating the initial herbicide absorption. The result also showed that UPP could reduce the binding behaviour of Ca2+ to glyphosate. CONCLUSION The application of UPP as an adjuvant could increase the efficacy of glyphosate and make it possible to achieve effective control of weeds with glyphosate at lower dose. Moreover, UPP showed less causticity to spraying tools and presented less of a health hazard. Therefore, UPP is accepted as being a new, effective and environmentally benign adjuvant for glyphosate.
Science of The Total Environment | 2018
Qianqian Geng; Tian Li; Pingliang Li; Xin Wang; Weijing Chu; Yanan Ma; Hui Ma; Hanwen Ni
Potential risk of endocrine disrupting compounds on non-target organisms has received extensive attentions in recent years. The present work aimed to investigate the behavior and effect of a synthetic steroid estrogen quinestrol in duckweed Spirodela polyrhiza L. Experimental results showed that quinestrol could be uptaken, accumulated, and biotransformed into 17 α-ethynylestradiol in S. polyrhiza L. The accumulation of quinestrol had a positive relation to the exposure concentration. The bioaccumulation rate was higher when the duckweed was exposed to quinestrol solutions at low concentrations than at high concentration. While the transformation of quinestrol showed no concentration-dependent manner. Quinestrol reduced the biomass and pigment content and increased superoxide dismutase and catalase activities and malondialdehyde contents in the duckweed. The results demonstrated that quinestrol could be accumulated and biotransformed in aquatic plant S. polyrhiza L. This work would provide supplemental data on the behavior of this steroid estrogen compound in aquatic system.