Pinglin Lai
Southern Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pinglin Lai.
Cancer Research | 2014
Qiancheng Song; Yuanfei Xu; Cuilan Yang; Zhenguo Chen; Chunhong Jia; Juan Chen; Yue Zhang; Pinglin Lai; Xiaorong Fan; Xuan Zhou; Jun Lin; Ming Li; Wenli Ma; Shen-qiu Luo; Xiaochun Bai
The nodal regulatory properties of microRNAs (miRNA) in metastatic cancer may offer new targets for therapeutic control. Here, we report that upregulation of miR-483-5p is correlated with the progression of human lung adenocarcinoma. miR-483-5p promotes the epithelial-mesenchymal transition (EMT) accompanied by invasive and metastatic properties of lung adenocarcinoma. Mechanistically, miR-483-5p is activated by the WNT/β-catenin signaling pathway and exerts its prometastatic function by directly targeting the Rho GDP dissociation inhibitor alpha (RhoGDI1) and activated leukocyte cell adhesion molecule (ALCAM), two putative metastasis suppressors. Furthermore, we found that downregulation of RhoGDI1 enhances expression of Snail, thereby promoting EMT. Importantly, miR-483-5p levels are positively correlated with β-catenin expression, but are negatively correlated with the levels of RhoGDI1 and ALCAM in human lung adenocarcinoma. Our findings reveal that miR-483-5p is a critical β-catenin-activated prometastatic miRNA and a negative regulator of the metastasis suppressors RhoGDI1 and ALCAM.
PLOS Genetics | 2015
Bin Huang; Yongkui Wang; Wenhao Wang; Juan Chen; Pinglin Lai; Zhongyu Liu; Bo Yan; Song Xu; Zhongmin Zhang; Chun Zeng; Limin Rong; Bin Liu; Daozhang Cai; Dadi Jin; Xiaochun Bai
The mechanistic target of rapamycin (mTOR) integrates both intracellular and extracellular signals to regulate cell growth and metabolism. However, the role of mTOR signaling in osteoblast differentiation and bone formation is undefined, and the underlying mechanisms have not been elucidated. Here, we report that activation of mTOR complex 1 (mTORC1) is required for preosteoblast proliferation; however, inactivation of mTORC1 is essential for their differentiation and maturation. Inhibition of mTORC1 prevented preosteoblast proliferation, but enhanced their differentiation in vitro and in mice. Activation of mTORC1 by deletion of tuberous sclerosis 1 (Tsc1) in preosteoblasts produced immature woven bone in mice due to excess proliferation but impaired differentiation and maturation of the cells. The mTORC1-specific inhibitor, rapamycin, restored these in vitro and in vivo phenotypic changes. Mechanistically, mTORC1 prevented osteoblast maturation through activation of the STAT3/p63/Jagged/Notch pathway and downregulation of Runx2. Preosteoblasts with hyperactive mTORC1 reacquired the capacity to fully differentiate and maturate when subjected to inhibition of the Notch pathway. Together, these findings identified the role of mTORC1 in osteoblast formation and established that mTORC1 prevents preosteoblast differentiation and maturation through activation of the Notch pathway.
Nature Communications | 2016
Bo Yan; Zhongmin Zhang; Dadi Jin; Chen Cai; Chunhong Jia; Wen Liu; Ting Wang; Sheng-fa Li; Haiyan Zhang; Bin Huang; Pinglin Lai; Hua Wang; Anling Liu; Chun Zeng; Daozhang Cai; Yu Jiang; Xiaochun Bai
Precise coordination of cell growth, proliferation and differentiation is essential for the development of multicellular organisms. Here, we report that although the mechanistic target of rapamycin complex 1 (mTORC1) activity is required for chondrocyte growth and proliferation, its inactivation is essential for chondrocyte differentiation. Hyperactivation of mTORC1 via TSC1 gene deletion in chondrocytes causes uncoupling of the normal proliferation and differentiation programme within the growth plate, resulting in uncontrolled cell proliferation, and blockage of differentiation and chondrodysplasia in mice. Rapamycin promotes chondrocyte differentiation and restores these defects in mutant mice. Mechanistically, mTORC1 downstream kinase S6K1 interacts with and phosphorylates Gli2, and releases Gli2 from SuFu binding, resulting in nuclear translocation of Gli2 and transcription of parathyroid hormone-related peptide (PTHrP), a key regulator of bone development. Our findings demonstrate that dynamically controlled mTORC1 activity is crucial to coordinate chondrocyte proliferation and differentiation partially through regulating Gli2/PTHrP during endochondral bone development.
Journal of The American Society of Nephrology | 2014
Zhenguo Chen; Heling Dong; Chunhong Jia; Qiancheng Song; Juan Chen; Yue Zhang; Pinglin Lai; Xiaorong Fan; Xuan Zhou; Miao Liu; Jun Lin; Cuilan Yang; Ming Li; Tianming Gao; Xiaochun Bai
Mutation of TSC (encoding tuberous sclerosis complex protein) and activation of mammalian target of rapamycin (mTOR) have been implicated in the pathogenesis of several renal diseases, such as diabetic nephropathy and polycystic kidney disease. However, the role of mTOR in renal potassium excretion and hyperkalemia is not known. We showed that mice with collecting-duct (CD)-specific ablation of TSC1 (CDTsc1KO) had greater mTOR complex 1 (mTORC1) activation in the CD and demonstrated features of pseudohypoaldosteronism, including hyperkalemia, hyperaldosteronism, and metabolic acidosis. mTORC1 activation caused endoplasmic reticulum stress, columnar cell lesions, and dedifferentiation of CD cells with loss of aquaporin-2 and epithelial-mesenchymal transition-like phenotypes. Of note, mTORC1 activation also reduced the expression of serum- and glucocorticoid-inducible kinase 1, a crucial regulator of potassium homeostasis in the kidney, and decreased the expression and/or activity of epithelial sodium channel-α, renal outer medullary potassium channel, and Na(+), K(+)-ATPase in the CD, which probably contributed to the aldosterone resistance and hyperkalemia in these mice. Rapamycin restored these phenotypic changes. Overall, this study identifies a novel function of mTORC1 in regulating potassium homeostasis and demonstrates that loss of TSC1 and activation of mTORC1 results in dedifferentiation and dysfunction of the CD and causes hyperkalemia. The CDTsc1KO mice provide a novel model for hyperkalemia induced exclusively by dysfunction of the CD.
Cancer Prevention Research | 2014
Hang Zheng; Hongjun Tang; Miao Liu; Minhong He; Pinglin Lai; Heling Dong; Jun Lin; Chunhong Jia; Mei Zhong; Yifan Dai; Xiaochun Bai; Liping Wang
Although preclinical and epidemiologic studies have shown the importance of n-3 polyunsaturated fatty acids (PUFA) in the prevention of hormone-responsive cancers such as breast cancer, evidence of the association between n-3 PUFAs and endometrial cancer risk is limited and no previous study has examined the effect of n-3 PUFAs on endometrial cancer in cellular and animal models. In this study, we demonstrated that docosahexenoic acid (DHA) dose- and time-dependently inhibited endometrial cancer cell proliferation, colony formation, and migration and promoted apoptosis. Dietary n-3 PUFAs efficiently prevented endometrial cancer cell growth in xenograft models. Moreover, ectopic expression of fat-1, a desaturase, catalyzed the conversion of n-6 to n-3 PUFAs and produced n-3 PUFAs endogenously, also suppressed endometrial tumor cell growth and migration, and potentiated apoptosis in endometrial cancer cell lines. Interestingly, implanted endometrial cancer cells were unable to grow in fat-1 transgenic SCID mice. Further study revealed that mTOR signaling, which plays an essential role in cell proliferation and endometrial tumorigenesis, is a target of n-3 PUFAs. Exogenous or endogenous n-3 PUFAs efficiently suppressed both mTOR complex 1 (mTORC1) and mTORC2 in vitro and in vivo. Moreover, both dietary n-3 PUFAs and transgenic expression of fat-1 in mice effectively repressed mTORC1/2 signaling and endometrial growth elicited by unopposed estrogen. Taken together, our findings provide comprehensive preclinical evidences that n-3 PUFAs efficiently prevent endometrial cancer and establish mTORC1/2 as a target of n-3 PUFAs. Cancer Prev Res; 7(8); 824–34. ©2014 AACR.
Drug Design Development and Therapy | 2013
Tian-yu Chen; Zhongmin Zhang; Xiaochen Zheng; Liang Wang; Minjun Huang; Si Qin; Jian Chen; Pinglin Lai; Chengliang Yang; Jia Liu; Yifan Dai; Dadi Jin; Xiaochun Bai
Aim To investigate the effect of endogenous n-3 polyunsaturated fatty acids (PUFAs) on bone marrow adipogenesis under osteoporosis conditions. Methods A mouse osteoporosis model overexpressing the FAT1 gene from Caenorhabditis elegans and converting n-6 PUFAs to n-3 PUFAs endogenously was used. Results The mice presented significantly lower bone marrow adiposity (adipocyte volume/tissue volume, mean adipocyte number) but increased the bone parameters (bone mineral density, bone mineral content, bone volume/total volume) in the distal femoral metaphysis. Conclusion Endogenous n-3 PUFAs protect bone marrow adipogenesis, which provides a novel drug target.
Asian Pacific Journal of Cancer Prevention | 2014
Er-Yong Lai; Zhenguo Chen; Xuan Zhou; Xiaorong Fan; Hua Wang; Pinglin Lai; Yong-Chun Su; Bai-Yu Zhang; Xiaochun Bai; Yunfeng Li
The mammalian target of rapamycin (mTOR) signaling pathway is upregulated in the pathogenesis of many cancers, including colorectal cancer (CRC). DEPTOR is an mTOR inhibitor whose expression is negatively regulated by mTOR. However, the role of DEPTOR in the development of CRC is not known. The aim of this study was to investigate the expression of DEPTOR and mTORC1 activity (P-S6) in a subset of CRC patients and determine their relation to tumor differentiation, invasion, nodal metastasis and disease-free survival. Here, Immunohistochemical expression of P-S6 (S235/236) and DEPTOR were evaluated in 1.5 mm tumor cores from 90 CRC patients and in 90 samples of adjacent normal mucosa by tissue microarray. The expression of P-S6 (S235/236) was upregulated in CRC, with the positive rate of P-S6 (S235/236) in CRC (63.3%) significantly higher than that in control tissues (36.7%, 30%) (p<0.05). P-S6 (S235/236) also correlated with high tumor histologic grade (p=0.002), and positive nodal metastasis (p=0.002). In contrast, the expression level of DEPTOR was correlated with low tumor histological grade (p=0.006), and negative nodal metastasis (p=0.001). Interestingly, P-S6 (S235/236) expression showed a significant negative association with the expression of DEPTOR in CRC (p=0.011, R= -0.279). However, upregulation of P-S6 (S235/236) (p=0.693) and downregulation of DEPTOR (p=0.331) in CRC were not significantly associated with overall survival. Thus, we conclude that expression of DEPTOR negatively correlates with mTORC1 activity and tumor progression in CRC. DEPTOR is a potential marker for prognostic evaluation and a target for the treatment of CRC.
Oncology Reports | 2014
Xiaokai Wang; Pinglin Lai; Zhongmin Zhang; Minjun Huang; Liang Wang; Dadi Jin; Rongping Zhou; Xiaochun Bai
Dysregulation of mammalian target of rapamycin (mTOR) signaling often occurs in many human malignant diseases, making it a potential target in the treatment of cancer. However, the effects of specifically targeted inhibition of mammalian target of rapamycin complex 2 (mTORC2) on osteosarcoma have not been reported. Three types of osteosarcoma cell lines (MG63/U2OS/Saos-2) were used in this study. Inhibition of mTORC2 was carried out by mTOR inhibitor PP242 and targeted siRNA. The anti-migration effect was evaluated through wound healing and Transwell assays. Osteosarcoma cells were either treated independently by inhibition of mTORC2 or in combination with cisplatin, and apoptosis was evaluated by staining with propidium iodide; PARP and caspase 7 expression levels were evaluated. Targeting of mTORC2 either by kinase inhibitor or rictor knockdown promoted cisplatin-induced apoptosis, but inhibition of mTORC1 either by rapamycin or raptor knockdown did not promote cisplatin-induced apoptosis. Furthermore, inhibition of mTORC2 but not mTORC1 effectively prevented osteosarcoma cell migration. These results suggest that agents that inhibit mTORC2 have advantages over mTORC1 inhibitors in the treatment of osteosarcoma. The present study provides a strong rationale for testing the use of mTORC1/2 inhibitors or the combination of mTORC1/2 inhibitors and cisplatin in the treatment of osteosarcoma.
Blood | 2017
Min Xiao; Yongkui Wang; Chen Tao; Zhenyu Wang; Jun Yang; Zhenguo Chen; Zhipeng Zou; Mangmang Li; Anling Liu; Chunhong Jia; Bin Huang; Bo Yan; Pinglin Lai; Changhai Ding; Daozhang Cai; Guozhi Xiao; Yu Jiang; Xiaochun Bai
Severe thrombocytopenia is a significant challenge in patients undergoing myelosuppressive chemotherapy for malignancies. Understanding the biology of platelet-producing megakaryocytes development in the bone marrow microenvironment may facilitate the development of novel therapies to stimulate platelet production and prevent thrombocytopenia. We report here that osteoblasts supported megakaryopoiesis by secreting interleukin-9 (IL-9), which stimulated IL-9 receptor (IL-9R)/Stat3 signaling in promoting megakaryopoiesis. IL-9 production in osteoblasts was negatively regulated by the mechanistic target of rapamycin complex 1 (mTORC1) signaling in a NF-κB-dependent manner. Constitutive activation of mTORC1 inhibited IL-9 production in osteoblasts and suppressed megakaryocytic cells expansion, whereas mTORC1 inactivation increased IL-9 production and enhanced megakaryocyte and platelet numbers in mice. In mouse models, we showed that IL-9 administration stimulated megakaryopoiesis, whereas neutralizing endogenous IL-9 or IL-9R depletion inhibited the process. Importantly, we found that low doses of IL-9 efficiently prevented chemotherapy-induced thrombocytopenia (CIT) and accelerated platelet recovery after CIT. These data indicate that IL-9 is an essential regulator of megakaryopoiesis and a promising therapeutic agent for treatment of thrombocytopenia such as CIT.
Journal of Bone and Mineral Research | 2018
Jiansen Lu; Haiyan Zhang; Daozhang Cai; Chun Zeng; Pinglin Lai; Yan Shao; Hang Fang; Delong Li; Jiayao Ouyang; Chang Zhao; Bin Huang; Jian Yang; Yu Jiang; Xiaochun Bai
Vascular‐invasion‐mediated interactions between activated articular chondrocytes and subchondral bone are essential for osteoarthritis (OA) development. Here, we determined the role of nutrient sensing mechanistic target of rapamycin complex 1 (mTORC1) signaling in the crosstalk across the bone cartilage interface and its regulatory mechanisms. Then mice with chondrocyte‐specific mTORC1 activation (Tsc1 CKO and Tsc1 CKOER) or inhibition (Raptor CKOER) and their littermate controls were subjected to OA induced by destabilization of the medial meniscus (DMM) or not. DMM or Tsc1 CKO mice were treated with bevacizumab, a vascular endothelial growth factor (VEGF)‐A antibody that blocks angiogenesis. Articular cartilage degeneration was evaluated using the Osteoarthritis Research Society International score. Immunostaining and Western blotting were conducted to detect H‐type vessels and protein levels in mice. Primary chondrocytes from mutant mice and ADTC5 cells were treated with interleukin‐1β to investigate the role of chondrocyte mTORC1 in VEGF‐A secretion and in vitro vascular formation. Clearly, H‐type vessels were increased in subchondral bone in DMM‐induced OA and aged mice. Cartilage mTORC1 activation stimulated VEGF‐A production in articular chondrocyte and H‐type vessel formation in subchondral bone. Chondrocyte mTORC1 promoted OA partially through formation of VEGF‐A–stimulated subchondral H‐type vessels. In particular, vascular‐derived nutrients activated chondrocyte mTORC1, and stimulated chondrocyte activation and production of VEGF, resulting in further angiogenesis in subchondral bone. Thus a positive‐feedback regulation of H‐type vessel formation in subchondral bone by articular chondrocyte nutrient‐sensing mTORC1 signaling is essential for the pathogenesis and progression of OA.