Pingyun Feng
University of California, Riverside
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pingyun Feng.
Journal of the American Chemical Society | 2010
Fan Zuo; Le Wang; Tao Wu; Zhenyu Zhang; Dan Borchardt; Pingyun Feng
Through a facile one-step combustion method, partially reduced TiO(2) has been synthesized. Electron paramagnetic resonance (EPR) spectra confirm the presence of Ti(3+) in the bulk of an as-prepared sample. The UV-vis spectra show that the Ti(3+) here extends the photoresponse of TiO(2) from the UV to the visible light region, which leads to high visible-light photocatalytic activity for the generation of hydrogen gas from water. It is worth noting that the Ti(3+) sites in the sample are highly stable in air or water under irradiation and the photocatalyst can be repeatedly used without degradation in the activity.
Nature | 1997
Pingyun Feng; Xianhui Bu; Galen D. Stucky
Zeolite analogues containing transition metals are highly desirable for industrial processes. A generalized synthesis method has been developed and demonstrated to have the potential to generate many transition-metal-rich zeolite-type structures. The method has been used to make zeolite analogues based on cobalt phosphate with diverse chemical compositions and structure types, including some analogues never previously synthesized and some zeolite-like structures only previously known theoretically. The concentrations of transition-metal atoms in the frameworks can be controlled by varying the charge and geometry of the structure-directing amine molecules.
Journal of the American Chemical Society | 2008
Rui Liu; Xiang Zhao; Tao Wu; Pingyun Feng
A new redox-responsive hybrid nanogated ensemble has been developed by introducing the disulfide-linked polymeric network at the outlet of mesoporous silica. The cross-linked polymer works as gatekeeper to control molecule release from mesoporous silica. The presence of disulfide reducing agent can effectively open the polymeric network and release the loading in a tunable manner.
Journal of the American Chemical Society | 2010
Rui Liu; Ying Zhang; Xiang Zhao; Arun Agarwal; Leonard J. Mueller; Pingyun Feng
A new pH-responsive hybrid nanogated ensemble has been developed by using acetal group linked gold nanoparticle capped mesoporous silica. The hydrolysis of acetal linker at acidic environment makes the gold nanoparticles work as a gatekeeper to control the release of guest molecules from mesoporous silica under different pHs.
Journal of the American Chemical Society | 2008
Jian Zhang; Shu-Mei Chen; Tao Wu; Pingyun Feng; Xianhui Bu
While it is not uncommon to form chiral crystals during crystallization, the formation of bulk porous homochiral materials from achiral building units is rare. Reported here is the homochiral crystallization of microporous materials through the chirality induction effect of natural alkaloids. The resulting material possesses permanent microporosity and has a uniform pore size of 9.3 A.
Nature | 2003
Nanfeng Zheng; Xianhui Bu; Pingyun Feng
Natural porous solids such as zeolites are invariably formed with inorganic cations such as Na+ and K+ (refs 1, 2). However, current research on new porous materials is mainly focused on the use of organic species as either structure-directing or structure-building units; purely inorganic systems have received relatively little attention in exploratory synthetic work. Here we report the synthesis of a series of three-dimensional sulphides and selenides containing highly mobile alkali metal cations as charge-balancing extra-framework cations. Such crystalline inorganic chalcogenides integrate zeolite-like architecture with high anionic framework polarizability and high concentrations of mobile cations. Such structural features are particularly desirable for the development of fast-ion conductors. These materials demonstrate high ionic conductivity (up to 1.8 × 10-2 ohm-1 cm-1) at room temperature and moderate to high humidity. This synthetic methodology, together with novel structural, physical and chemical properties, may lead to the development of new microporous and open-framework materials with potential applications in areas such as batteries, fuel cells, electrochemical sensors and photocatalysis.
Journal of the American Chemical Society | 2010
Shou-Tian Zheng; Julia T. Bu; Yufei Li; Tao Wu; Fan Zuo; Pingyun Feng; Xianhui Bu
The integration of negatively charged single-metal building blocks {In(CO2)4} and positively charged trimeric clusters {In3O} leads to three unique cage-within-cage-based porous materials, which exhibit not only high hydrothermal, thermal, and photochemical stability but also attractive structural features contributing to a very high CO2 uptake capacity of up to 119.8 L/L at 273 K and 1 atm.
Angewandte Chemie | 2012
Fan Zuo; Krassimir N. Bozhilov; Robert J. Dillon; Le Wang; Phillip Smith; Xiang Zhao; Christopher J. Bardeen; Pingyun Feng
The properties and applications of materials are significantly controlled by their physical characteristics, such as size, shape, and structural state. Many processes are governed by interface reactions by which the surface energy and reactivity depend on the spatial configuration, coordination, and structural state of surface atoms and molecules. For crystals, this dependence is directly related to the expression of specific crystallographic faces, which exhibit different surface structures and atomic configurations. These differences explain why some applications, such as molecular adsorption and desorption, gas sensing, drug molecule delivery and release, and heterogeneous catalysis are highly sensitive to the surface atomic structures. Recent progress in the engineering of crystal morphology has included the synthesis of polyhedral silver nanocrystals by the polyol method, the epitaxially seeded growth of highly faceted Pt-Pd nanocrystals, and the controlled overgrowth of Pd-Au core–shell structures enclosed by {111} facets. Apart from these metallic nanocrystals, binary or ternary compounds with preferentially developed facets have also been reported. The facet effect is an important factor for heterogeneous photocatalysts, because surface atom arrangement and coordination intrinsically determine the adsorption of reactant molecules, surface transfer between photoexcited electrons and reactant molecules, and desorption of product molecules. This phenomenon has been well studied in TiO2 photocatalysts. TiO2 is one of the most extensively studied photocatalysts owing to its abundance, nontoxicity, and stability. However, for practical applications, pure TiO2 is not a good candidate because it is only active under ultraviolet (UV) irradiation owing to the band gap of 3.2 eV for the anatase phase. Therefore, band-gap engineering is required to use TiO2 as a water-splitting catalyst under visible-light irradiation. Reduced TiO2 (TiO2 x), containing Ti or O vacancies, has been reported to show visible-light absorption. Various strategies have been applied to synthesize reduced TiO2, such as heating under vacuum [8] or reducing gas, laser irradiation, and high-energy particle bombardment (electrons or Ar ions). A big challenge for the application of reduced TiO2 is that the surface oxygen defects are highly unstable in air owing to the susceptibility of Ti toward oxidation by O2. [13] Recently, we reported a facile one-step combustion method to synthesize partially reduced TiO2. [14] The presence of Ti in the sample extends the photoresponse of TiO2 from the UV to the visible light region, which leads to high visible-light photocatalytic activity for the generation of hydrogen gas from water. However, in the rapid and harsh combustion process, there is very limited control over the crystallization process, which results in the irregularly shaped products. Herein we report the development of a simple solution method to grow non-stoichiometric rutile TiO2 crystals with desired facets. The incorporation of Ti, which extends the light absorption from the UV into the visible range, along with the development of facets with high reactivity, results in a material exhibiting greatly enhanced photocatalytic H2 production activity relative to the combustion product we reported before. Powder X-ray diffraction analysis (Figure 1a) shows that the sample of as-produced TiO2 (sample S1) has rutile structure. All of the diffraction peaks can be assigned to
Nature Communications | 2013
Xiang Zhao; Xianhui Bu; Tao Wu; Shou-Tian Zheng; Le Wang; Pingyun Feng
Crystalline porous materials, especially inorganic porous solids such as zeolites, usually have negative frameworks with extra-framework mobile cations and are widely used for cation exchange. It is highly desirable to develop new materials with positive frameworks for selective anion exchange and separation or storage and delivery. Recent advances in metal-organic framework synthesis have created new opportunities in this direction. Here we report the synthesis of a series of positive indium metal-organic frameworks and their utilization as a platform for the anion exchange-based separation process. This process is capable of size- or charge-selective ion-exchange of organic dyes and may form the basis for size-selective ion chromatography. Ion-exchange dynamics of a series of organic dyes and their selective encapsulation and release are also studied, highlighting the advantages of metal-organic framework compositions for designing host materials tailored for applications in anion separation and purification.
Journal of the American Chemical Society | 2009
Shu-Mei Chen; Jian Zhang; Tao Wu; Pingyun Feng; Xianhui Bu
Under diverse and dramatically different chemical environments, including organic solvents, an ionic liquid, and a deep eutectic solvent, a series of porous anionic framework materials that contain size-tunable, ion-exchangeable extraframework organic cations have been prepared. Even though a large fraction of the pore space is occupied with charge-balancing cations, some of these materials exhibit a very high gas uptake capacity (e.g., 70.6 cm(3)/g for CO(2) at 1 atm and 273 K), suggesting that the charged anionic framework and extraframework cations may help to enhance the gas adsorption.