Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piotr A. Ziolkowski is active.

Publication


Featured researches published by Piotr A. Ziolkowski.


Nature Genetics | 2013

Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters

Kyuha Choi; Xiaohui Zhao; Krystyna A. Kelly; Oliver Venn; James D. Higgins; Nataliya E. Yelina; Thomas J. Hardcastle; Piotr A. Ziolkowski; Gregory P. Copenhaver; F. Chris H. Franklin; Gil McVean; Ian R. Henderson

PRDM9 directs human meiotic crossover hot spots to intergenic sequence motifs, whereas budding yeast hot spots overlap regions of low nucleosome density (LND) in gene promoters. To investigate hot spots in plants, which lack PRDM9, we used coalescent analysis of genetic variation in Arabidopsis thaliana. Crossovers increased toward gene promoters and terminators, and hot spots were associated with active chromatin modifications, including H2A.Z, histone H3 Lys4 trimethylation (H3K4me3), LND and low DNA methylation. Hot spot–enriched A-rich and CTT-repeat DNA motifs occurred upstream and downstream, respectively, of transcriptional start sites. Crossovers were asymmetric around promoters and were most frequent over CTT-repeat motifs and H2A.Z nucleosomes. Pollen typing, segregation and cytogenetic analysis showed decreased numbers of crossovers in the arp6 H2A.Z deposition mutant at multiple scales. During meiosis, H2A.Z forms overlapping chromosomal foci with the DMC1 and RAD51 recombinases. As arp6 reduced the number of DMC1 or RAD51 foci, H2A.Z may promote the formation or processing of meiotic DNA double-strand breaks. We propose that gene chromatin ancestrally designates hot spots within eukaryotes and PRDM9 is a derived state within vertebrates.


Molecular Plant | 2014

Arabidopsis Protein Phosphatase 2C ABI1 Interacts with Type I ACC Synthases and Is Involved in the Regulation of Ozone-Induced Ethylene Biosynthesis

Ludwików Agnieszka; Cieśla Agata; Kasprowicz-Maluśki Anna; Mituła Filip; Tajdel Małgorzata; Gałgański Łukasz; Piotr A. Ziolkowski; Kubiak Piotr; Małecka Arleta; Piechalak Aneta; Szabat Marta; Górska Alicja; Dąbrowski Maciej; Ibragimow Izabela; Sadowski Jan

Ethylene plays a crucial role in various biological processes and therefore its biosynthesis is strictly regulated by multiple mechanisms. Posttranslational regulation, which is pivotal in controlling ethylene biosynthesis, impacts 1-aminocyclopropane 1-carboxylate synthase (ACS) protein stability via the complex interplay of specific factors. Here, we show that the Arabidopsis thaliana protein phosphatase type 2C, ABI1, a negative regulator of abscisic acid signaling, is involved in the regulation of ethylene biosynthesis under oxidative stress conditions. We found that ABI1 interacts with ACS6 and dephosphorylates its C-terminal fragment, a target of the stress-responsive mitogen-activated protein kinase, MPK6. In addition, ABI1 controls MPK6 activity directly and by this means also affects the ACS6 phosphorylation level. Consistently with this, ozone-induced ethylene production was significantly higher in an ABI1 knockout strain (abi1td) than in wild-type plants. Importantly, an increase in stress-induced ethylene production in the abi1td mutant was compensated by a higher ascorbate redox state and elevated antioxidant activities. Overall, the results of this study provide evidence that ABI1 restricts ethylene synthesis by affecting the activity of ACS6. The ABI1 contribution to stress phenotype underpins its role in the interplay between the abscisic acid (ABA) and ethylene signaling pathways.


The Plant Cell | 2017

Dual role of the histone variant H2A.Z in transcriptional regulation of stress-response genes

Weronika Sura; Wojciech M. Karlowski; Tomasz Bieluszewski; Marta Kus-Slowinska; Łukasz Pawełoszek; Jan Sadowski; Piotr A. Ziolkowski

H2A.Z is removed from nucleosomes localized in genes upon transcriptional activation in response to drought stress conditions in Arabidopsis thaliana. The influence of the histone variant H2A.Z on transcription remains a long-standing conundrum. Here, by analyzing the actin-related protein6 mutant, which is impaired in H2A.Z deposition, and by H2A.Z profiling in stress conditions, we investigated the impact of this histone variant on gene expression in Arabidopsis thaliana. We demonstrate that the arp6 mutant exhibits anomalies in response to osmotic stress. Indeed, stress-responsive genes are overrepresented among those hyperactive in arp6. In wild-type plants, these genes exhibit high levels of H2A.Z in the gene body. Furthermore, we observed that in drought-responsive genes, levels of H2A.Z in the gene body correlate with transcript levels. H2A.Z occupancy, but not distribution, changes in parallel with transcriptional changes. In particular, we observed H2A.Z loss upon transcriptional activation and H2A.Z gain upon repression. These data suggest that H2A.Z has a repressive role in transcription and counteracts unwanted expression in noninductive conditions. However, reduced activity of some genes in arp6 is associated with distinct behavior of H2A.Z at their +1 nucleosome, which exemplifies the requirement of this histone for transcription. Our data support a model where H2A.Z in gene bodies has a strong repressive effect on transcription, whereas in +1 nucleosomes, it is important for maintaining the activity of some genes.


eLife | 2015

Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover remodelling via interference during Arabidopsis meiosis

Piotr A. Ziolkowski; Luke E. Berchowitz; Christophe Lambing; Nataliya E. Yelina; Xiaohui Zhao; Krystyna A. Kelly; Kyuha Choi; Liliana Ziolkowska; Viviana June; Eugenio Sanchez-Moran; Chris Franklin; Gregory P. Copenhaver; Ian R. Henderson

During meiosis homologous chromosomes undergo crossover recombination. Sequence differences between homologs can locally inhibit crossovers. Despite this, nucleotide diversity and population-scaled recombination are positively correlated in eukaryote genomes. To investigate interactions between heterozygosity and recombination we crossed Arabidopsis lines carrying fluorescent crossover reporters to 32 diverse accessions and observed hybrids with significantly higher and lower crossovers than homozygotes. Using recombinant populations derived from these crosses we observed that heterozygous regions increase crossovers when juxtaposed with homozygous regions, which reciprocally decrease. Total crossovers measured by chiasmata were unchanged when heterozygosity was varied, consistent with homeostatic control. We tested the effects of heterozygosity in mutants where the balance of interfering and non-interfering crossover repair is altered. Crossover remodeling at homozygosity-heterozygosity junctions requires interference, and non-interfering repair is inefficient in heterozygous regions. As a consequence, heterozygous regions show stronger crossover interference. Our findings reveal how varying homolog polymorphism patterns can shape meiotic recombination. DOI: http://dx.doi.org/10.7554/eLife.03708.001


Genome | 2009

Comparative analysis of the Brassica oleracea genetic map and the Arabidopsis thaliana genome

Małgorzata Kaczmarek; Grzegorz Koczyk; Piotr A. Ziolkowski; Danuta Babula-Skowrońska; Jan Sadowski

We further investigated genome macrosynteny for Brassica species and Arabidopsis thaliana. This work aimed at comparative map construction for B. oleracea and A. thaliana chromosomes based on 160 known A. thaliana probes: 147 expressed sequence tags (ESTs) and 13 full-length cDNA clones. Based on an in silico study of the A. thaliana genome, most of the selected ESTs (83%) represented unique or low-copy genes. We identified conserved segments by the visual inspection of comparative data with a priori assumptions, and established their significance with the LineUp algorithm. Evaluation of the number of B. oleracea gene copies per A. thaliana EST revealed a fixed upward trend. We established a segregation distortion pattern for all genetic loci, with particular consideration of the type of selection (gametic or zygotic), and discuss its possible impact on genetic map construction. Consistent with previous reports, we found evidence for numerous chromosome rearrangements and the genome fragment replication of B. oleracea that have taken place since the divergence of the two species. Also, we found that over 54% of the B. oleracea genome is covered by 24 segments conserved with the A. thaliana genome. The average conserved segment is composed of 5 loci covering 19.3 cM in the B. oleracea genetic map and 2.42 Mb in the A. thaliana physical map. We have also attempted to use a unified system of conserved blocks (previously described) to verify our results and perform a comprehensive comparison with other Brassica species.


Genes & Development | 2017

Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination

Piotr A. Ziolkowski; Charles J. Underwood; Christophe Lambing; Marina Martinez-Garcia; Emma J. Lawrence; Liliana Ziolkowska; Catherine Griffin; Kyuha Choi; F. Chris H. Franklin; Robert A. Martienssen; Ian R. Henderson

During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection.


Nature Protocols | 2013

High-throughput analysis of meiotic crossover frequency and interference via flow cytometry of fluorescent pollen in Arabidopsis thaliana

Nataliya E. Yelina; Piotr A. Ziolkowski; Nigel Miller; Xiaohui Zhao; Krystyna A. Kelly; Daniela F. Muñoz; David J. Mann; Gregory P. Copenhaver; Ian R. Henderson

During meiosis, reciprocal exchange between homologous chromosomes occurs as a result of crossovers (COs). CO frequency varies within genomes and is subject to genetic, epigenetic and environmental control. As robust measurement of COs is limited by their low numbers, typically 1–2 per chromosome, we adapted flow cytometry for use with Arabidopsis transgenic fluorescent protein–tagged lines (FTLs) that express eCFP, dsRed or eYFP fluorescent proteins in pollen. Segregation of genetically linked transgenes encoding fluorescent proteins of distinct colors can be used to detect COs. The fluorescence of up to 80,000 pollen grains per individual plant can be measured in 10–15 min using this protocol. A key element of CO control is interference, which inhibits closely spaced COs. We describe a three-color assay for the measurement of CO frequency in adjacent intervals and calculation of CO interference. We show that this protocol can be used to detect changes in CO frequency and interference in the fancm zip4 double mutant. By enabling high-throughput measurement of CO frequency and interference, these methods will facilitate genetic dissection of meiotic recombination control.


PLOS Genetics | 2016

Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes

Kyuha Choi; Carsten Reinhard; Heïdi Serra; Piotr A. Ziolkowski; Charles J. Underwood; Xiaohui Zhao; Thomas J. Hardcastle; Nataliya E. Yelina; Catherine Griffin; Matthew A. Jackson; Christine Mézard; Gil McVean; Gregory P. Copenhaver; Ian R. Henderson

Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.


BMC Plant Biology | 2015

AtEAF1 is a potential platform protein for Arabidopsis NuA4 acetyltransferase complex

Tomasz Bieluszewski; Lukasz Galganski; Weronika Sura; Anna Bieluszewska; Mateusz Abram; Agnieszka Ludwików; Piotr A. Ziolkowski; Jan Sadowski

BackgroundHistone acetyltransferase complex NuA4 and histone variant exchanging complex SWR1 are two chromatin modifying complexes which act cooperatively in yeast and share some intriguing structural similarities. Protein subunits of NuA4 and SWR1-C are highly conserved across eukaryotes, but form different multiprotein arrangements. For example, the human TIP60-p400 complex consists of homologues of both yeast NuA4 and SWR1-C subunits, combining subunits necessary for histone acetylation and histone variant exchange. It is currently not known what protein complexes are formed by the plant homologues of NuA4 and SWR1-C subunits.ResultsWe report on the identification and molecular characterization of AtEAF1, a new subunit of Arabidopsis NuA4 complex which shows many similarities to the platform protein of the yeast NuA4 complex. AtEAF1 copurifies with Arabidopsis homologues of NuA4 and SWR1-C subunits ARP4 and SWC4 and interacts physically with AtYAF9A and AtYAF9B, homologues of the YAF9 subunit. Plants carrying a T-DNA insertion in one of the genes encoding AtEAF1 showed decreased FLC expression and early flowering, similarly to Atyaf9 mutants. Chromatin immunoprecipitation analyses of the single mutant Ateaf1b-2 and artificial miRNA knock-down Ateaf1 lines showed decreased levels of H4K5 acetylation in the promoter regions of major flowering regulator genes, further supporting the role of AtEAF1 as a subunit of the plant NuA4 complex.ConclusionsGrowing evidence suggests that the molecular functions of the NuA4 and SWR1 complexes are conserved in plants and contribute significantly to plant development and physiology. Our work provides evidence for the existence of a yeast-like EAF1 platform protein in A. thaliana, filling an important gap in the knowledge about the subunit organization of the plant NuA4 complex.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis

Heïdi Serra; Christophe Lambing; Catherine Griffin; Stephanie D. Topp; Divyashree C. Nageswaran; Charles J. Underwood; Piotr A. Ziolkowski; Mathilde Séguéla-Arnaud; Joiselle Blanche Fernandes; Raphael Mercier; Ian R. Henderson

Significance The majority of eukaryotes reproduce sexually, creating genetic variation within populations. Sexual reproduction requires gamete production via meiotic cell division. During meiosis, homologous chromosomes pair and undergo exchange, called crossover. Crossover is vital for crop breeding and remains a major tool to combine useful traits. Despite the importance of crossovers for breeding, their levels are typically low, with one to two forming per chromosome, irrespective of physical chromosome size. Here we genetically engineer superrecombining Arabidopsis, via boosting the major procrossover pathway (using additional copies of the HEI10 E3-ligase gene), and simultaneously removing a major antirecombination pathway (using mutations in RECQ4A and RECQ4B helicase genes). This strategy has the potential to drive massive crossover elevations in crop genomes and accelerate breeding. During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100–200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as noncrossovers. To bias DSB repair toward crossovers, we simultaneously increased dosage of the procrossover E3 ligase gene HEI10 and introduced mutations in the anticrossovers helicase genes RECQ4A and RECQ4B. As HEI10 and recq4a recq4b increase interfering and noninterfering crossover pathways, respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.

Collaboration


Dive into the Piotr A. Ziolkowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Sadowski

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyuha Choi

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaohui Zhao

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory P. Copenhaver

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Weronika Sura

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge