Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piotr Batys is active.

Publication


Featured researches published by Piotr Batys.


Journal of Chemical Physics | 2012

Modeling of LbL multilayers with controlled thickness, roughness, and specific surface area

Piotr Batys; Paweł Weroński

We present computer simulation results of the layer by layer self-assembling process of colloidal particles. We have generated five multilayer structures of monodisperse spherical particles according to a generalized model of random sequential adsorption of hard spheres. The multilayers, each created at a different single-layer surface coverage, are of similar thickness. We have compared the transparency of the five multilayers and the structure of their outer layers in terms of the two-dimensional pair-correlation function. We have analyzed the variation of multilayer thickness with the number of adsorbed layers. We have also calculated the root-mean-square roughness of the multilayers as a function of the number of adsorption cycles. Finally, we have determined the specific surface area of the porous films as a function of the distance from the solid substrate. Our results suggest that in the limit of low porosity the multilayer transparency decreases exponentially with its porosity. The multilayer thickness is directly proportional to the number of adsorption cycles. The average single-layer thickness grows asymptotically with the single-layer coverage. We have also found that with the number of adsorbed layers the multilayer roughness increases to an asymptotic value. We have observed oscillatory variations of the multilayer specific surface area, decaying exponentially with the distance from the substrate. The decay length of the oscillation increases exponentially with the surface coverage. We have also determined the particle layer interpenetration for each multilayer and we have found that it decreases exponentially with the increase of the coverage. Our results suggest that all the film characteristics strongly depend on the method of its preparation and can be controlled by manipulating the single-layer surface coverage or deposition time. The results can be useful for efficient designing multilayers with desired properties.


Journal of Chemical Physics | 2013

Limiting diffusion current at rotating disk electrode with dense particle layer.

Paweł Weroński; M. Nosek; Piotr Batys

Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.


Journal of Colloid and Interface Science | 2014

Influence of ionic strength on poly(diallyldimethylammonium chloride) macromolecule conformations in electrolyte solutions

Zbigniew Adamczyk; Krzysztof Jamroży; Piotr Batys; Aneta Michna

Conformations of poly(diallyldimethylammonium chloride), PDADMAC, molecules in electrolyte solutions were experimentally evaluated by dynamic light scattering (DLS), micro-electrophoretic and viscosity measurements. The role of ionic strength varied within 10(-4) and 2M was systematically studied. The diffusion coefficient of the polymer molecules was equal to 1.3×10(-7)cm(2)s(-1) for the ionic strength range 5×10(-4) to 10(-2)M decreasing slightly for higher ionic strength. This corresponds to the hydrodynamic diameter of 38.5nm. Using the diffusion coefficient and the electrophoretic mobility data, the electrokinetic charge on PDADMAC molecules was calculated as a function of ionic strength. It was positive and varied between 84 and 51 elementary charges. This gives the effective ionization degree of the macromolecule equal to 13% and 8% for ionic strength of 5×10(-4) and 0.15M, respectively. Additional information about macromolecule conformation was derived from the viscosity measurements of dilute PDADMAC solutions. The intrinsic viscosity derived from these measurements decreased abruptly with ionic strength from 3400 for 10(-4)M to 100 for 2M, NaCl solutions. By extrapolating the hydrodynamic diameter and intrinsic viscosity data to zero ionic strength the polyelectrolyte molecule contour length of 240nm and the backbone diameter of 0.85nm were predicted. On the other hand, the decrease in the intrinsic viscosity for higher ionic strength was attributed to changes in macromolecule conformations to more collapsed ones. The experimental results were interpreted by molecular dynamics modeling of PDADMAC chain conformations in electrolyte solutions where the ionic strength effect and the effective ionization degree were considered. A quantitative agreement was attained for lower ionic strength range proving that the combined DLS and viscosity measurements furnish reliable information about macromolecule conformations in electrolyte solution.


Journal of Colloid and Interface Science | 2015

Mapping single macromolecule chains using the colloid deposition method: PDADMAC on mica

Aneta Michna; Zbigniew Adamczyk; Piotr Batys

Monolayers of the cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDADMAC) on mica were thoroughly characterized using the streaming potential and the colloid deposition methods. Initially, the stability of the monolayers was determined by performing desorption experiments carried out under diffusion-controlled regime. It was shown that the desorption of the polyelectrolyte at the ionic strength range 0.01-0.15 M is negligible over the time of 20 h. The structure of PDADMAC monolayers and orientation of molecules were evaluated using the colloid deposition measurements involving negatively charged polystyrene latex microspheres, 820 nm in diameter. The functional relationships between the polyelectrolyte coverage and latex coverage deposited within 20 h were acquired by direct optical microscope. In this way the influence of ionic strength varied in the range 0.15-0.01 M on the molecule orientation in monolayers was determined. It was shown that for ionic strength of 0.15 M nearly one to one mapping of polyelectrolyte chains by colloid particles can be achieved for PDADMAC coverage below 0.1%. In this way, because of a considerable surface area ratio between the macromolecule and the colloid particle, an enhancement factor of 10(3) can be attained. This behavior was quantitatively interpreted in terms of the random site adsorption model whereas the classical mean-field theory proved inadequate. On the other hand, for lower ionic strength, it was confirmed that an irreversible immobilization of latex particles can only occur at a few closely spaced PDADMAC chains. It was shown that these experimental results were consistent with the side-on adsorption mechanisms of PDADMAC at mica for the above ionic strength.


Modelling and Simulation in Materials Science and Engineering | 2014

Porosity and tortuosity of layer-by-layer assemblies of spherical particles

Piotr Batys; Paweł Weroński

We have used the extended random sequential adsorption model of hard spheres to mimic the layer by layer self-assembling process of monodisperse colloidal particles at a solid–liquid interface. We have studied five multilayers of similar thickness, each created at a different single-layer surface coverage. Our results suggest that the single-layer coverage has a significant effect on the film transport properties. The local values of multilayer porosity and tortuosity exhibit decaying oscillatory variations in the distance range dependent on the surface coverage. The mean multilayer porosity and tortuosity describe equations linear with respect to the surface coverage. The mean tortuosity and porosity of multilayers created with our model are also connected by a linear equation valid for any single-layer coverage and any number of layers. We have also determined the normalized equivalent thickness of stagnant solution layer as a function of the multilayer coverage and number of layers. This parameter grows asymptotically with the number of layers and can be approximated with good accuracy by the ratio of the squared mean tortuosity to the mean porosity of a multilayer.


Journal of Colloid and Interface Science | 2016

Wet formation and structural characterization of quasi-hexagonal monolayers.

Piotr Batys; Paweł Weroński; Magdalena Nosek

We have presented a simple and efficient method for producing dense particle monolayers with controlled surface coverage. The method is based on particle sedimentation, manipulation of the particle-substrate electrostatic interaction, and gentle mechanical vibration of the system. It allows for obtaining quasi-hexagonal structures under wet conditions. Using this method, we have produced a monolayer of 3 μm silica particles on a glassy carbon substrate. By optical microscopy, we have determined the coordinates of the particles and surface coverage of the obtained structure to be 0.82. We have characterized the monolayer structure by means of the pair-correlation function and power spectrum. We have also compared the results with those for a 2D hexagonal monolayer and monolayer generated by random sequential adsorption at the coverage 0.50. We have found the surface fractal dimension to be 2.5, independently of the monolayer surface coverage.


Langmuir | 2018

Particulate Coatings via Evaporation-Induced Self-Assembly of Polydisperse Colloidal Lignin on Solid Interfaces

Oriol Cusola; Samu Kivistö; Sampsa Vierros; Piotr Batys; Mariko Ago; Blaise L. Tardy; Luiz G. Greca; M. Blanca Roncero; Maria Sammalkorpi; Orlando J. Rojas

Polydisperse smooth and spherical biocolloidal particles were suspended in aqueous media and allowed to consolidate via evaporation-induced self-assembly. The stratification of the particles at the solid–air interface was markedly influenced, but not monotonically, by the drying rate. Cross-sectional imaging via electron microscopy indicated a structured coating morphology that was distinctive from that obtained by using particles with a mono- or bimodal distribution. Segregation patterns were found to derive from the interplay of particle diffusion, interparticle forces, and settling dynamics. Supporting our experimental findings, computer simulations showed an optimal drying rate for achieving maximum segregation. Overall, stratified coatings comprising nano- and microparticles derived from lignin are expected to open opportunities for multifunctional structures that can be designed and predicted on the basis of experimental Péclet numbers and computational order.


ACS central science | 2018

Molecular Origin of the Glass Transition in Polyelectrolyte Assemblies

Yanpu Zhang; Piotr Batys; Joshua T. O’Neal; Fei Li; Maria Sammalkorpi; Jodie L. Lutkenhaus

Water plays a central role in the assembly and the dynamics of charged systems such as proteins, enzymes, DNA, and surfactants. Yet it remains a challenge to resolve how water affects relaxation at a molecular level, particularly for assemblies of oppositely charged macromolecules. Here, the molecular origin of water’s influence on the glass transition is quantified for several charged macromolecular systems. It is revealed that the glass transition temperature (Tg) is controlled by the number of water molecules surrounding an oppositely charged polyelectrolyte–polyelectrolyte intrinsic ion pair as 1/Tg ∼ ln(nH2O/nintrinsic ion pair). This relationship is found to be “general”, as it holds for two completely different types of charged systems (pH- and salt-sensitive) and for both polyelectrolyte complexes and polyelectrolyte multilayers, which are made by different paths. This suggests that water facilitates the relaxation of charged assemblies by reducing attractions between oppositely charged intrinsic ion pairs. This finding impacts current interpretations of relaxation dynamics in charged assemblies and points to water’s important contribution at the molecular level.


Langmuir | 2017

QCM-D Investigation of Swelling Behavior of Layer-by-Layer Thin Films upon Exposure to Monovalent Ions

Joshua T. O'Neal; Ethan Y. Dai; Yanpu Zhang; Kyle B Clark; Kathryn G. Wilcox; Ian M. George; Nandha E Ramasamy; Daisy Enriquez; Piotr Batys; Maria Sammalkorpi; Jodie L. Lutkenhaus

Polyelectrolyte multilayers and layer-by-layer assemblies are susceptible to structural changes in response to ionic environment. By altering the salt type and ionic strength, structural changes can be induced by disruption of intrinsically bound ion pairs within the multilayer network via electrostatic screening. Notably, high salt concentrations have been used for the purposes of salt-annealing and self-healing of LbL assemblies with KBr, in particular, yielding a remarkably rapid response. However, to date, the structural and swelling effects of various monovalent ion species on the behavior of LbL assemblies remain unclear, including a quantitative view of ion content in the LbL assembly and thickness changes over a wide concentration window. Here, we investigate the effects of various concentrations of KBr (0 to 1.6 M) on the swelling and de-swelling of LbL assemblies formed from poly(diallyldimethylammonium) polycation (PDADMA) and poly(styrene sulfonate) polyanion (PSS) in 0.5 M NaCl using quartz-crystal microbalance with dissipation (QCM-D) monitoring as compared to KCl, NaBr, and NaCl. The ion content after salt exchange is quantified using neutron activation analysis (NAA). Our results demonstrate that Br- ions have a much greater effect on the structure of as-prepared thin films than Cl- at ionic strengths above assembly conditions, which is possibly caused by the more chaotropic nature of Br-. It is also found that the anion in general dominates the swelling response as compared to the cation because of the excess PDADMA in the multilayer. Four response regimes are identified that delineate swelling due to electrostatic repulsion, slight contraction, swelling due to doping, and film destruction as ionic strength increases. This understanding is critical if such materials are to be used in applications requiring submersion in chemically dynamic environments such as sensors, coatings on biomedical implants, and filtration membranes.


Macromolecules | 2018

Hydration and Temperature Response of Water Mobility in Poly(diallyldimethylammonium)–Poly(sodium 4-styrenesulfonate) Complexes

Piotr Batys; Yanpu Zhang; Jodie L. Lutkenhaus; Maria Sammalkorpi

The combination of all-atom molecular dynamics simulations with differential scanning calorimetry (DSC) has been exploited to investigate the influence of temperature and hydration on the water distribution and mobility in poly(diallyldimethylammonium) (PDADMA) and poly(sodium 4-styrenesulfonate) (PSS) complexes. The findings show that the vast majority of the water molecules hydrating the polyelectrolyte complexes (PECs) with 18–30 wt % hydration are effectively immobilized due to the strong interactions between the PE charge groups and water. Temperature and hydration were found to decrease similarly the fraction of strongly bound water. Additionally, at low hydration or at low temperatures, water motions become dominantly local vibrations and rotations instead of translational motion; translation dominance is recovered in a similar fashion by increase of both temperature and hydration. DSC experiments corroborate the simulation findings by showing that nonfreezing, bound water dominates in hydrated PECs at comparable hydrations. Our results raise attention to water as an equal variable to temperature in the design and engineering of stimuli-responsive polyelectrolyte materials and provide mechanistic explanation for the similarity.

Collaboration


Dive into the Piotr Batys's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paweł Weroński

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Magdalena Nosek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zbigniew Adamczyk

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Aneta Michna

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Michał Skoczek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paweł Weroński

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge