Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piotr G. Jablonski is active.

Publication


Featured researches published by Piotr G. Jablonski.


Science | 2015

Jumping on water: Surface tension–dominated jumping of water striders and robotic insects

Je-Sung Koh; Eunjin Yang; Gwang-Pil Jung; Sun-Pill Jung; Jae Hak Son; Sang-im Lee; Piotr G. Jablonski; Robert J. Wood; Ho-Young Kim; Kyu-Jin Cho

How to walk and jump on water Jumping on land requires the coordinated motion of a number of muscles and joints in order to overcome gravity. Walking on water requires specialized legs that are designed to avoid breaking the surface tension during motion. But how do insects, such as water striders and fishing spiders, manage to jump on water, where extra force is needed to generate lift? Koh et al. studied water striders to determine the structure of the legs needed to make jumping possible, as well as the limits on the range of motion that avoids breaking the surface tension (see the Perspective by Vella). They then built water-jumping robots to verify the key parameters of leg design and motion. Science, this issue p. 517; see also p. 472 Specialized leg design and motions allow both insects and robots to jump on water. [Also see Perspective by Vella] Jumping on water is a unique locomotion mode found in semi-aquatic arthropods, such as water striders. To reproduce this feat in a surface tension–dominant jumping robot, we elucidated the hydrodynamics involved and applied them to develop a bio-inspired impulsive mechanism that maximizes momentum transfer to water. We found that water striders rotate the curved tips of their legs inward at a relatively low descending velocity with a force just below that required to break the water surface (144 millinewtons/meter). We built a 68-milligram at-scale jumping robotic insect and verified that it jumps on water with maximum momentum transfer. The results suggest an understanding of the hydrodynamic phenomena used by semi-aquatic arthropods during water jumping and prescribe a method for reproducing these capabilities in artificial systems.


Animal Cognition | 2011

Wild birds recognize individual humans: experiments on magpies, Pica pica

Won Young Lee; Sang-im Lee; Jae Chun Choe; Piotr G. Jablonski

The ability to distinguish among heterospecific individuals has been reported in only a few animal species. Humans can be viewed as a special type of heterospecifics because individuals differ widely in behavior, ranging from non-threatening to very threatening toward animals. In this study, we asked whether wild magpies can recognize individual humans who had accessed their nests. We compared the behavior of breeding pairs toward individual humans before and after the humans climbed up to the birds’ nests, and also toward climbers and non-climbers. We have evidence for (i) aggressive responses of the magpie pairs toward humans who had repeatedly accessed their nests (climbers) and a lack of response to humans who had not accessed the nest (non-climbers); (ii) a total lack of scolding responses toward climbers by magpie pairs whose nests had not been accessed; (iii) a selective aggressive response to the climber when a climber and a non-climber were presented simultaneously. Taken together, these results suggest that wild magpies can distinguish individual humans that pose a threat to their nests from humans that have not behaved in a threatening way. The magpie is only the third avian species, along with crows and mockingbirds, in which recognition of individual humans has been documented in the wild. Here, we propose a new hypothesis (adopted from psychology) that frequent previous exposure to humans in urban habitats contributes to the ability of birds to discriminate among human individuals. This mechanism, along with high cognitive abilities, may predispose some species to learn to discriminate among human individuals. Experimental tests of these two mechanisms are proposed.


Journal of Evolutionary Biology | 2012

Camouflage through an active choice of a resting spot and body orientation in moths

Changku Kang; Jongyeol Moon; Sang-im Lee; Piotr G. Jablonski

Cryptic colour patterns in prey are classical examples of adaptations to avoid predation, but we still know little about behaviours that reinforce the match between animal body and the background. For example, moths avoid predators by matching their colour patterns with the background. Active choice of a species‐specific body orientation has been suggested as an important function of body positioning behaviour performed by moths after landing on the bark. However, the contribution of this behaviour to moths’ crypticity has not been directly measured. From observations of geometrid moths, Hypomecis roboraria and Jankowskia fuscaria, we determined that the positioning behaviour, which consists of walking and turning the body while repeatedly lifting and lowering the wings, resulted in new resting spots and body orientations in J. fuscaria and in new resting spots in H. roboraria. The body positioning behaviour of the two species significantly decreased the probability of visual detection by humans, who viewed photographs of the moths taken before and after the positioning behaviour. This implies that body positioning significantly increases the camouflage effect provided by moth’s cryptic colour pattern regardless of whether the behaviour involves a new body orientation or not. Our study demonstrates that the evolution of morphological adaptations, such as colour pattern of moths, cannot be fully understood without taking into account a behavioural phenotype that coevolved with the morphology for increasing the adaptive value of the morphological trait.


BMC Evolutionary Biology | 2010

Size-assortative mating and sexual size dimorphism are predictable from simple mechanics of mate-grasping behavior

Chang S. Han; Piotr G. Jablonski; Beobkyun Kim; Frank C. Park

BackgroundA major challenge in evolutionary biology is to understand the typically complex interactions between diverse counter-balancing factors of Darwinian selection for size assortative mating and sexual size dimorphism. It appears that rarely a simple mechanism could provide a major explanation of these phenomena. Mechanics of behaviors can predict animal morphology, such like adaptations to locomotion in animals from various of taxa, but its potential to predict size-assortative mating and its evolutionary consequences has been less explored. Mate-grasping by males, using specialized adaptive morphologies of their forelegs, midlegs or even antennae wrapped around female body at specific locations, is a general mating strategy of many animals, but the contribution of the mechanics of this wide-spread behavior to the evolution of mating behavior and sexual size dimorphism has been largely ignored.ResultsHere, we explore the consequences of a simple, and previously ignored, fact that in a grasping posture the position of the males grasping appendages relative to the females body is often a function of body size difference between the sexes. Using an approach taken from robot mechanics we model coercive grasping of females by water strider Gerris gracilicornis males during mating initiation struggles. We determine that the male optimal size (relative to the female size), which gives the males the highest grasping force, properly predicts the experimentally measured highest mating success. Through field sampling and simulation modeling of a natural population we determine that the simple mechanical model, which ignores most of the other hypothetical counter-balancing selection pressures on body size, is sufficient to account for size-assortative mating pattern as well as species-specific sexual dimorphism in body size of G. gracilicornis.ConclusionThe results indicate how a simple and previously overlooked physical mechanism common in many taxa is sufficient to account for, or importantly contribute to, size-assortative mating and its consequences for the evolution of sexual size dimorphism.


PLOS ONE | 2009

Female Genitalia Concealment Promotes Intimate Male Courtship in a Water Strider

Chang S. Han; Piotr G. Jablonski

Violent coercive mating initiation is typical for animals with sexual conflict over mating. In these species, the coevolutionary arms-race between female defenses against coercive mating and male counter-adaptations for increased mating success leads to coevolutionary chases of male and female traits that influence the mating. It has been controversial whether one of the sexes can evolve traits that allow them to “win” this arms race. Here, we use morphological analysis (traditional and scanning electron micrographs), laboratory experiments and comparative methods to show how females of a species characterized by typical coercive mating initiation appear to “win” a particular stage of the sexual conflict by evolving morphology to hide their genitalia from direct, forceful access by males. In an apparent response to the female morphological adaptation, males of this species added to their typically violent coercive mounting of the female new post-mounting, pre-copulatory courtship signals produced by tapping the waters surface with the mid-legs. These courtship signals are intimate in the sense that they are aimed at the female, on whom the male is already mounted. Females respond to the signals by exposing their hidden genitalia for copulatory intromission. Our results indicate that the apparent victory of coevolutionary arms race by one sex in terms of morphology may trigger evolution of a behavioral phenotype in the opposite sex.


Ecological Entomology | 2011

Effect of sex and bright coloration on survival and predator‐induced wing damage in an aposematic lantern fly with startle display

Changku Kang; Sang-im Lee; Piotr G. Jablonski

1. Aposematic coloration in prey promotes its survival by conspicuously advertising unpalatability to predators. Although classical examples of aposematic signals involve constant presentation of a signal at a distance, some animals suddenly display warning colours only when they are attacked.


PLOS ONE | 2013

Direct Look from a Predator Shortens the Risk-Assessment Time by Prey

Sang-im Lee; Soyun Hwang; Young-eun Joe; Hyun-kyung Cha; Gun-ho Joo; Hyeon-Jeong Lee; Ji-Won Kim; Piotr G. Jablonski

Decision making process is an important component of information use by animals and has already been studied in natural situations. Decision making takes time, which is expressed as a cost in evolutionary explanations of decision making abilities of animals. However, the duration of information assessment and decision making process has not been measured in a natural situation. Here, we use responses of wild magpies (Pica pica) to predictably approaching humans to demonstrate that, regardless of whether the bird perceived high (decided to fly away) or low (resumed foraging) threat level, the bird assessed the situation faster when approaching humans looked directly at it than when the humans were not directly looking at it. This indicates that prey is able to extract more information about the predator’s intentions and to respond sooner when the predator is continuously (“intently”) looking at the prey. The results generally illustrate how an increase of information available to an individual leads to a shorter assessment and decision making process, confirming one of central tenets of psychology of information use in a wild bird species in its natural habitat.


PLOS ONE | 2013

Cryptically patterned moths perceive bark structure when choosing body orientations that match wing color pattern to the bark pattern.

Changku Kang; Jongyeol Moon; Sang-im Lee; Piotr G. Jablonski

Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths’ behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis.


Scientific Reports | 2015

The Function of the Alula in Avian Flight

Sang-im Lee; Jooha Kim; Hyungmin Park; Piotr G. Jablonski; Haecheon Choi

The alula is a small structure located at the joint between the hand-wing and arm-wing of birds and is known to be used in slow flight with high angles of attack such as landing. It is assumed to function similarly to a leading-edge slat that increases lift and delays stall. However, in spite of its universal presence in flying birds and the wide acceptance of stall delay as its main function, how the alula delays the stall and aids the flight of birds remains unclear. Here, we investigated the function of alula on the aerodynamic performance of avian wings based on data from flight tasks and wind-tunnel experiments. With the alula, the birds performed steeper descending flights with greater changes in body orientation. Force measurements revealed that the alula increases the lift and often delays the stall. Digital particle image velocimetry showed that these effects are caused by the streamwise vortex, formed at the tip of the alula, that induces strong downwash and suppresses the flow separation over the wing surface. This is the first experimental evidence that the alula functions as a vortex generator that increases the lift force and enhances manoeuvrability in flights at high angles of attack.


PeerJ | 2017

Impact of land reclamation and agricultural water regime on the distribution and conservation status of the endangered Dryophytes suweonensis

Amaël Borzée; Kyungmin Kim; Kyongman Heo; Piotr G. Jablonski; Yikweon Jang

Knowledge about the distribution and habitat preferences of a species is critical for its conservation. The Suweon Treefrog (Dryophytes suweonensis) is an endangered species endemic to the Republic of Korea. We conducted surveys from 2014 to 2016 at 890 potentially suitable sites across the entire range of the species in South Korea. We then assessed whether D. suweonensis was found in the current and ancestral predicted ranges, reclaimed and protected areas, and how the presence of agricultural floodwater affected its occurrence. Our results describe a 120 km increase in the southernmost known distribution of the species, and the absence of the species at lower latitudes. We then demonstrate a putative constriction on the species ancestral range due to urban encroachment, and provide evidence for a significant increase in its coastal range due to the colonisation of reclaimed land by the species. In addition, we demonstrate that D. suweonensis is present in rice fields that are flooded with water originating from rivers as opposed to being present in rice fields that are irrigated from underground water. Finally, the non-overlap of protected areas and the occurrence of the species shows that only the edge of a single site where D. suweonensis occurs is legally protected. Based on our results and the literature, we suggest the design of a site fitting all the ecological requirements of the species, and suggest the use of such sites to prevent further erosion in the range of D. suweonensis.

Collaboration


Dive into the Piotr G. Jablonski's collaboration.

Top Co-Authors

Avatar

Sang-im Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Changku Kang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jongyeol Moon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Chang S. Han

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Ho-Young Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Chang Ku Kang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Eunjin Yang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jae Hak Son

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sang im Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge