Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piotr J. Franaszczuk is active.

Publication


Featured researches published by Piotr J. Franaszczuk.


Frontiers in Human Neuroscience | 2011

Language Mapping in Multilingual Patients: Electrocorticography and Cortical Stimulation During Naming

Mackenzie C. Cervenka; Dana Boatman-Reich; Julianna Ward; Piotr J. Franaszczuk; Nathan E. Crone

Multilingual patients pose a unique challenge when planning epilepsy surgery near language cortex because the cortical representations of each language may be distinct. These distinctions may not be evident with routine electrocortical stimulation mapping (ESM). Electrocorticography (ECoG) has recently been used to detect task-related spectral perturbations associated with functional brain activation. We hypothesized that using broadband high gamma augmentation (HGA, 60–150u2009Hz) as an index of cortical activation, ECoG would complement ESM in discriminating the cortical representations of first (L1) and second (L2) languages. We studied four adult patients for whom English was a second language, in whom subdural electrodes (a total of 358) were implanted to guide epilepsy surgery. Patients underwent ECoG recordings and ESM while performing the same visual object naming task in L1 and L2. In three of four patients, ECoG found sites activated during naming in one language but not the other. These language-specific sites were not identified using ESM. In addition, ECoG HGA was observed at more sites during L2 versus L1 naming in two patients, suggesting that L2 processing required additional cortical resources compared to L1 processing in these individuals. Post-operative language deficits were identified in three patients (one in L2 only). These deficits were predicted by ECoG spectral mapping but not by ESM. These results suggest that pre-surgical mapping should include evaluation of all utilized languages to avoid post-operative functional deficits. Finally, this study suggests that ECoG spectral mapping may potentially complement the results of ESM of language.


Clinical Neurophysiology | 2009

Intracranial mapping of auditory perception: Event-related responses and electrocortical stimulation

Alon Sinai; Nathan E. Crone; H.M. Wied; Piotr J. Franaszczuk; Diana L. Miglioretti; D. Boatman-Reich

OBJECTIVEnWe compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship.nnnMETHODSnIntracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis.nnnRESULTSnESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses.nnnCONCLUSIONSnIntracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech.nnnSIGNIFICANCEnThese results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping.


Frontiers in Computational Neuroscience | 2010

Quantifying Auditory Event-Related Responses in Multichannel Human Intracranial Recordings

Dana Boatman-Reich; Piotr J. Franaszczuk; Anna Korzeniewska; Brian Caffo; Eva K. Ritzl; Sarah Colwell; Nathan E. Crone

Multichannel intracranial recordings are used increasingly to study the functional organization of human cortex. Intracranial recordings of event-related activity, or electrocorticography (ECoG), are based on high density electrode arrays implanted directly over cortex, combining good temporal and spatial resolution. Developing appropriate statistical methods for analyzing event-related responses in these high dimensional ECoG datasets remains a major challenge for clinical and systems neuroscience. We present a novel methodological framework that combines complementary, existing methods adapted for statistical analysis of auditory event-related responses in multichannel ECoG recordings. This analytic framework integrates single-channel (time-domain, time–frequency) and multichannel analyses of event-related ECoG activity to determine statistically significant evoked responses, induced spectral responses, and effective (causal) connectivity. Implementation of this quantitative approach is illustrated using multichannel ECoG data from recent studies of auditory processing in patients with epilepsy. Methods described include a time–frequency matching pursuit algorithm adapted for modeling brief, transient cortical spectral responses to sound, and a recently developed method for estimating effective connectivity using multivariate autoregressive modeling to measure brief event-related changes in multichannel functional interactions. A semi-automated spatial normalization method for comparing intracranial electrode locations across patients is also described. The individual methods presented are published and readily accessible. We discuss the benefits of integrating multiple complementary methods in a unified and comprehensive quantitative approach. Methodological considerations in the analysis of multichannel ECoG data, including corrections for multiple comparisons are discussed, as well as remaining challenges in the development of new statistical approaches.


Cerebral Cortex | 2012

Connectivity between Perisylvian and Bilateral Basal Temporal Cortices

Mohamad Z. Koubeissi; Ronald P. Lesser; Alon Sinai; William D. Gaillard; Piotr J. Franaszczuk; Nathan E. Crone

Language processing requires the orchestrated action of different neuronal populations, and some studies suggest that the role of the basal temporal (BT) cortex in language processing is bilaterally distributed. Our aim was to demonstrate connectivity between perisylvian cortex and both BT areas. We recorded corticocortical evoked potentials (CCEPs) in 8 patients with subdural electrodes implanted for surgical evaluation of intractable epilepsy. Four patients had subdural grids over dominant perisylvian and BT areas, and 4 had electrode strips over both BT areas and left posterior superior temporal gyrus (LPSTG). After electrocortical mapping, patients with grids had 1-Hz stimulation of language areas. Patients with strips did not undergo mapping but had 1-Hz stimulation of the LPSTG. Posterior language area stimulation elicited CCEPs in ipsilateral BT cortex in 3/4 patients with left hemispheric grids. CCEPs were recorded in bilateral BT cortices in 3/4 patients with strips upon stimulation of the LPSTG, and in the LPSTG in the fourth patient upon stimulation of either BT area. This is the first in vivo demonstration of connectivity between LPSTG and both BT cortices. The role of BT cortex in language processing may be bilaterally distributed and related to linking visual information with phonological representations stored in the LPSTG.


Biological Cybernetics | 2007

Studies of stimulus parameters for seizure disruption using neural network simulations

William S. Anderson; Pawel Kudela; Jounhong Cho; Piotr J. Franaszczuk

A large scale neural network simulation with realistic cortical architecture has been undertaken to investigate the effects of external electrical stimulation on the propagation and evolution of ongoing seizure activity. This is an effort to explore the parameter space of stimulation variables to uncover promising avenues of research for this therapeutic modality. The model consists of an approximately 800xa0μm × 800xa0μm region of simulated cortex, and includes seven neuron classes organized by cortical layer, inhibitory or excitatory properties, and electrophysiological characteristics. The cell dynamics are governed by a modified version of the Hodgkin–Huxley equations in single compartment format. Axonal connections are patterned after histological data and published models of local cortical wiring. Stimulation induced action potentials take place at the axon initial segments, according to threshold requirements on the applied electric field distribution. Stimulation induced action potentials in horizontal axonal branches are also separately simulated. The calculations are performed on a 16 node distributed 32-bit processor system. Clear differences in seizure evolution are presented for stimulated versus the undisturbed rhythmic activity. Data is provided for frequency dependent stimulation effects demonstrating a plateau effect of stimulation efficacy as the applied frequency is increased from 60 to 200xa0Hz. Timing of the stimulation with respect to the underlying rhythmic activity demonstrates a phase dependent sensitivity. Electrode height and position effects are also presented. Using a dipole stimulation electrode arrangement, clear orientation effects of the dipole with respect to the model connectivity is also demonstrated. A sensitivity analysis of these results as a function of the stimulation threshold is also provided.


Neuroscience | 2010

Painful stimuli evoke potentials recorded from the medial temporal lobe in humans.

C.C. Liu; Shinji Ohara; Piotr J. Franaszczuk; N. Zagzoog; Michela Gallagher; F. A. Lenz

The role of human medial temporal structures in fear conditioning has led to the suggestion that neurons in these structures might respond to painful stimuli. We have now tested the hypothesis that recordings from these structures will demonstrate potentials related to the selective activation of cutaneous nociceptors by a painful laser stimulus (laser evoked potential, LEP) (Kenton B, Coger R, Crue B, Pinsky J, Friedman Y, Carmon A (1980) Neurosci Lett 17:301-306). Recordings were carried out through electrodes implanted bilaterally in these structures for the investigation of intractable epilepsy. Reproducible LEPs were commonly recorded both bilaterally and unilaterally, while LEPs were recorded at contacts on the left (9/14, P=0.257) as commonly as on the right (5/14), independent of the hand stimulated. Along electrodes traversing the amygdala the majority of LEPs were recorded from dorsal contacts near the central nucleus of the amygdala and the nucleus basalis. Stimulus evoked changes in theta activity were observed at contacts on the right at which isolated early negative LEPs (N2*) responses could be recorded. Contacts at which LEPs could be recorded were as commonly located in medial temporal structures with evidence of seizure activity as on those without. These results demonstrate the presence of pain-related inputs to the medial temporal lobe where they may be involved in associative learning to produce anxiety and disability related to painful stimuli.


Epilepsy Research | 2009

Phase-dependent stimulation effects on bursting activity in a neural network cortical simulation

William S. Anderson; Pawel Kudela; Seth H. Weinberg; Piotr J. Franaszczuk

PURPOSEnA neural network simulation with realistic cortical architecture has been used to study synchronized bursting as a seizure representation. This model has the property that bursting epochs arise and cease spontaneously, and bursting epochs can be induced by external stimulation. We have used this simulation to study the time-frequency properties of the evolving bursting activity, as well as effects due to network stimulation.nnnMETHODSnThe model represents a cortical region of 1.6 mm x 1.6mm, and includes seven neuron classes organized by cortical layer, inhibitory or excitatory properties, and electrophysiological characteristics. There are a total of 65,536 modeled single compartment neurons that operate according to a version of Hodgkin-Huxley dynamics. The intercellular wiring is based on histological studies and our previous modeling efforts.nnnRESULTSnThe bursting phase is characterized by a flat frequency spectrum. Stimulation pulses are applied to this modeled network, with an electric field provided by a 1mm radius circular electrode represented mathematically in the simulation. A phase dependence to the post-stimulation quiescence is demonstrated, with local relative maxima in efficacy occurring before or during the network depolarization phase in the underlying activity. Brief periods of network insensitivity to stimulation are also demonstrated. The phase dependence was irregular and did not reach statistical significance when averaged over the full 2.5s of simulated bursting investigated. This result provides comparison with previous in vivo studies which have also demonstrated increased efficacy of stimulation when pulses are applied at the peak of the local field potential during cortical after discharges. The network bursting is synchronous when comparing the different neuron classes represented up to an uncertainty of 10 ms. Studies performed with an excitatory chandelier cell component demonstrated increased synchronous bursting in the model, as predicted from experimental work.nnnCONCLUSIONSnThis large-scale multi-neuron neural network simulation reproduces many aspects of evolving cortical bursting behavior as well as the timing-dependent effects of electrical stimulation on that bursting.


Pain | 2011

Attention to painful cutaneous laser stimuli evokes directed functional connectivity between activity recorded directly from human pain-related cortical structures

C.C. Liu; Shinji Ohara; Piotr J. Franaszczuk; F. A. Lenz

&NA; Our previous studies show that attention to painful cutaneous laser stimuli is associated with functional connectivity between human primary somatosensory cortex (SI), parasylvian cortex (PS), and medial frontal cortex (MF), which may constitute a pain network. However, the direction of functional connections within this network is unknown. We now test the hypothesis that activity recorded from the SI has a driver role, and a causal influence, with respect to activity recorded from PS and MF during attention to a laser. Local field potentials (LFP) were recorded from subdural grid electrodes implanted for the treatment of epilepsy. We estimated causal influences by using the Granger causality (GRC), which was computed while subjects performed either an attention task (counting laser stimuli) or a distraction task (reading for comprehension). Before the laser stimuli, directed attention to the painful stimulus (counting) consistently increased the number of GRC pairs both within the SI cortex and from SI upon PS (SI > PS). After the laser stimulus, attention to a painful stimulus increased the number of GRC pairs from SI > PS, and SI > MF, and within the SI area. LFP at some electrode sites (critical sites) exerted GRC influences upon signals at multiple widespread electrodes, both in other cortical areas and within the area where the critical site was located. Critical sites may bind these areas together into a pain network, and disruption of that network by stimulation at critical sites might be used to treat pain. Electrical activity recorded from the somatosensory cortex drives activity recorded elsewhere in the pain network and may bind the network together; disruption of that network by stimulation at critical sites might be used to treat pain.


Neuroscience | 2011

Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus, and frontal lobe

C.C. Liu; Nathan E. Crone; Piotr J. Franaszczuk; Dominic T. Cheng; D.S. Schretlen; F. A. Lenz

The current model of fear conditioning suggests that it is mediated through modules involving the amygdala (AMY), hippocampus (HIP), and frontal lobe (FL). We now test the hypothesis that habituation and acquisition stages of a fear conditioning protocol are characterized by different event-related causal interactions (ERCs) within and between these modules. The protocol used the painful cutaneous laser as the unconditioned stimulus and ERC was estimated by analysis of local field potentials recorded through electrodes implanted for investigation of epilepsy. During the prestimulus interval of the habituation stage FL>AMY ERC interactions were common. For comparison, in the poststimulus interval of the habituation stage, only a subdivision of the FL (dorsolateral prefrontal cortex, dlPFC) still exerted the FL>AMY ERC interaction (dlFC>AMY). For a further comparison, during the poststimulus interval of the acquisition stage, the dlPFC>AMY interaction persisted and an AMY>FL interaction appeared. In addition to these ERC interactions between modules, the results also show ERC interactions within modules. During the poststimulus interval, HIP>HIP ERC interactions were more common during acquisition, and deep hippocampal contacts exerted causal interactions on superficial contacts, possibly explained by connectivity between the perihippocampal gyrus and the HIP. During the prestimulus interval of the habituation stage, AMY>AMY ERC interactions were commonly found, while interactions between the deep and superficial AMY (indirect pathway) were independent of intervals and stages. These results suggest that the network subserving fear includes distributed or widespread modules, some of which are themselves local networks. ERC interactions between and within modules can be either static or change dynamically across intervals or stages of fear conditioning.


Neuroscience | 2011

Painful laser stimuli induce directed functional interactions within and between the human amygdala and hippocampus

C.C. Liu; C.-Q. Shi; Piotr J. Franaszczuk; Nathan E. Crone; D.S. Schretlen; Shinji Ohara; F. A. Lenz

The pathways by which painful stimuli are signaled within the human medial temporal lobe are unknown. Rodent studies have shown that nociceptive inputs are transmitted from the brainstem or thalamus through one of two pathways to the central nucleus of the amygdala. The indirect pathway projects from the basal and lateral nuclei of the amygdala to the central nucleus, while the direct pathway projects directly to the central nucleus. We now test the hypothesis that the human ventral amygdala (putative basal and lateral nuclei) exerts a causal influence upon the dorsal amygdala (putative central nucleus), during the application of a painful laser stimulus. Local field potentials (LFPs) were recorded from depth electrode contacts implanted in the medial temporal lobe for the treatment of epilepsy, and causal influences were analyzed by Granger causality (GRC). This analysis indicates that the dorsal amygdala exerts a pre-stimulus causal influence upon the hippocampus, consistent with an attention-related response to the painful laser. Within the amygdala, the analysis indicates that the ventral contacts exert a causal influence upon dorsal contacts, consistent with the human (putative) indirect pathway. Potentials evoked by the laser (LEPs) were not recorded in the ventral nuclei, but were recorded at dorsal amygdala contacts which were not preferentially those receiving causal influences from the ventral contacts. Therefore, it seems likely that the putative indirect pathway is associated with causal influences from the ventral to the dorsal amygdala, and is distinct from the human (putative) indirect pathway which mediates LEPs in the dorsal amygdala.

Collaboration


Dive into the Piotr J. Franaszczuk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. A. Lenz

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Pawel Kudela

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Shinji Ohara

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

C.C. Liu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.S. Schretlen

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alon Sinai

Rambam Health Care Campus

View shared research outputs
Researchain Logo
Decentralizing Knowledge