Piotr Kachlicki
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Piotr Kachlicki.
Metabolomics | 2007
Maciej Stobiecki; A. Skirycz; Lucien Kerhoas; Piotr Kachlicki; Dorota Muth; Jacques Einhorn; Bernd Mueller-Roeber
Profiling of plant secondary metabolites is still a very difficult task. Liquid chromatography (LC) or capillary electrophoresis hyphenated with different kinds of detectors are methods of choice for analysis of polar, thermo labile compounds with high molecular masses. We demonstrate the applicability of LC combined with UV diode array or/and mass spectrometric detectors for the unambiguous identification and quantification of flavonoid conjugates isolated from Arabidopsis thaliana leaves of different genotypes and grown in different environmental conditions. During LC/UV/MS/MS analyses we were able to identify tetra-, tri-, and di-glycosides of kaempferol, quercetin and isorhamnetin. Based on our results we can conclude that due to the co-elution of different chemical compounds in reversed phase HPLC systems the application of UV detectors does not allow to precisely profile all flavonoid conjugates existing in A. thaliana genotypes. Using MS detection it was possible to unambiguously recognize the glycosylation patterns of the aglycones. However, from the mass spectra we could not conclude neither the anomeric form of the C-1 carbon atoms of sugar moieties in glycosidic bonds between sugars or sugar and aglycone nor the position of the second carbon involved in disaccharides. The applicability of collision induced dissociation techniques (CID MS/MS) for structural analyses of the studied group of plant secondary metabolites with two types of analyzers (triple quadrupole or ion trap) was demonstrated.
Plant Physiology and Biochemistry | 2009
Michał Jasiński; Piotr Kachlicki; Paweł Rodziewicz; Marek Figlerowicz; Maciej Stobiecki
Medicago truncatula is a model species for the study of the unique secondary metabolism in legumes. LC/MS/MS analysis was used to identify and profile flavonoid glycoconjugates and free aglycones in leaves of M. truncatula (ecotype R108-1) infected with the fungal pathogen Phoma medicaginis. Use of a high resolution analyzer with a collision induced dissociation tandem mass spectrometer (CID MS/MS) permitted structural elucidation of target secondary metabolites and four new acylated flavone glycosides have been identified. Changes in the phytoalexin medicarpin and its isoflavone precursors were quantitatively monitored at various time points after fungal spore application. Application of spores induced disease symptoms in the leaves of infected plants and resulted in an increase in the medicarpin precursors formononetin 7-O-glucoside and malonylated formononetin 7-O-glucoside between one and three days post-infection. Relative concentrations of medicarpin were highest five days post-infection. The rapid increase of these molecules was clearly positively correlated to the infection process as certain of them were absent in uninfected leaves, suggesting that the relative rate of their synthesis is tightly related with the infection process.
FEBS Journal | 2009
Humberto Fernandes; Anna Bujacz; Grzegorz Bujacz; Filip Jelen; Michał Jasiński; Piotr Kachlicki; Jacek Otlewski; Michal Sikorski; Mariusz Jaskolski
Plant pathogenesis‐related (PR) proteins of class 10 are the only group among the 17 PR protein families that are intracellular and cytosolic. Sequence conservation and the wide distribution of PR‐10 proteins throughout the plant kingdom are an indication of an indispensable function in plants, but their true biological role remains obscure. Crystal and solution structures for several homologues have shown a similar overall fold with a vast internal cavity which, together with structural similarities to the steroidogenic acute regulatory protein‐related lipid transfer domain and cytokinin‐specific binding proteins, strongly indicate a ligand‐binding role for the PR‐10 proteins. This article describes the structure of a complex between a classic PR‐10 protein [Lupinus luteus (yellow lupine) PR‐10 protein of subclass 2, LlPR‐10.2B] and N,N′‐diphenylurea, a synthetic cytokinin. Synthetic cytokinins have been shown in various bioassays to exhibit activity similar to that of natural cytokinins. The present 1.95 Å resolution crystallographic model reveals four N,N′‐diphenylurea molecules in the hydrophobic cavity of the protein and a degree of conformational changes accompanying ligand binding. The structural adaptability of LlPR‐10.2B and its ability to bind different cytokinins suggest that this protein, and perhaps other PR‐10 proteins as well, can act as a reservoir of cytokinin molecules in the aqueous environment of a plant cell.
Toxins | 2013
Agnieszka Waśkiewicz; Łukasz Stępień; Karolina Wilman; Piotr Kachlicki
Fusarium proliferatum and F. verticillioides are considered as minor pathogens of pea (Pisum sativum L.). Both species can survive in seed material without visible disease symptoms, but still contaminating it with fumonisins. Two populations of pea-derived F. proliferatum and F. verticillioides strains were subjected to FUM1 sequence divergence analysis, forming a distinct group when compared to the collection strains originating from different host species. Furthermore, the mycotoxigenic abilities of those strains were evaluated on the basis of in planta and in vitro fumonisin biosynthesis. No differences were observed in fumonisin B (FB) levels measured in pea seeds (maximum level reached 1.5 μg g−1); however, in rice cultures, the majority of F. proliferatum genotypes produced higher amounts of FB1–FB3 than F. verticillioides strains.
Phytochemical Analysis | 2010
Łukasz Marczak; Maciej Stobiecki; Michał Jasiński; Wieslaw Oleszek; Piotr Kachlicki
INTRODUCTION Flavonoids are important plant compounds occurring in tissues mostly in the form of glycoconjugates. Most frequently the sugar moiety is comprised of mono- or oligosaccharides consisting of common sugars like glucose, rhamnose or galactose. In some plant species the glycosidic moiety contains glucuronic acid and may be acylated by phenylpropenoic acids. METHODOLOGY Flavonoid glyconjugates were extracted from leaves of Medicago truncatula ecotype R108 and submitted to analysis using high-performance liquid chromatography combined with high-resolution tandem (quadrupole-time of flight, QToF) mass spectrometry. RESULTS The studied leaf extracts contained 26 different flavonoid glycosides among which 22 compounds were flavone (apigenin, luteolin, chrysoeriol and tricin) glucuronides and 13 were acylated with aromatic acids (p-coumaric, ferulic or sinapic). The fragmentation pathways observed in positive and negative ion mass spectra differed substantially between each other and from these of flavonoid glycosides which did not contain acidic sugars. The application of high-resolution MS techniques allowed unequivocal differentiation between ions with the same nominal m/z values containing different substituents (e.g. ferulic acid or glucuronic acid). Eleven of the identified flavonoids have not been reported previously in this species. PERSPECTIVES The presented unique fragmentation pathways of flavonoid glucuronates enable detection of these compounds in tissue extracts from different plant species.
Food Chemistry | 2016
Katarzyna Mikołajczyk-Bator; Alfred Błaszczyk; Mariusz Czyżniejewski; Piotr Kachlicki
Triterpene saponins are important bioactive constituents with an enormous variety in structure widely distributed in many plants. Here, we profiled triterpene saponins from the skin and flesh of red beetroot Beta vulgaris L. cultivars Nochowski from 2012 and 2013 season using reversed-phase liquid chromatography combined with negative-ion electrospray ionisation quadrupole mass spectrometry. We tentatively identified 44 triterpene saponins, of which 37 had not been detected previously in the root of red beets and 27 saponins were tentatively identified as potentially new compounds. All observed compounds were glycosides of four different aglycone structures, of which akebonoic acid and gypsogenin were not detected previous in red beetroot. Based on the high-resolution mass measurements among these 44 detected saponins 10 groups of isomers were identified. We report for the first time that 18 saponins with dioxolane-type (2 saponins) and acetal-type (16 saponins) substituents were detected in the roots of red beet.
Metabolomics | 2013
Anna Wojakowska; Dorota Muth; Dorota Narożna; Cezary J. Mądrzak; Maciej Stobiecki; Piotr Kachlicki
Plant interactions with environmental factors cause changes in the metabolism and regulation of biochemical and physiological processes. Plant defense against pathogenic microorganisms depends on an innate immunity system that is activated as a result of infection. There are two mechanisms of triggering this system: basal immunity activated as a result of a perception of microbe-associated molecular patterns through pattern recognition receptors situated on the cell surface and effector-triggered immunity (ETI). An induced biosynthesis of bioactive secondary metabolites, in particular phytoalexins, is one of the mechanisms of plant defense to fungal infection. Results of the study on narrow leaf lupin (Lupinus angustifolius L.) plants infected with the anthracnose fungus Colletotrichum lupini and treated with fungal phytotoxic metabolites are described in the paper. The C. lupini phytotoxins were isolated from liquid cultures, purified and partially characterized with physicochemical methods. Accumulation of secondary metabolites on leaf surface and within the tissues of plants either infected, treated with the fungal phytotoxin or submitted to both treatments was studied using GC-MS and LC-MS, respectively. Substantial differences in isoflavone aglycones and glycoconjugate profiles occurred in response to different ways of plant treatment.
Rapid Communications in Mass Spectrometry | 2008
Lukasz Marczak; Piotr Kachlicki; Plotr Kozniewski; Aleksandra Skirycz; Paweł Krajewski; Maciej Stobiecki
Anthocyanins are secondary plant metabolites ubiquitous in the plant kingdom. They have different biological activities, so monitoring their content in plant tissue or in feed/food derived from plants may be an important task in different projects from various fields of molecular biology and biotechnology. Profiling of secondary metabolites with high-performance liquid chromatography/mass spectrometry (HPLC/MS) systems is time-consuming, especially when many samples have to be checked within a defined time frame with a reasonable number of repetitions according to the metabolomic standards. Even application of the advanced ultra-performance liquid chromatography (UPLC)/MS or equivalent systems would require a long time for analysis of numerous samples. We demonstrate the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the assessment of level (concentration) of anthocyanins in leaf tissues of four Arabidopsis thaliana ecotypes grown at normal (20 degrees C/16 degrees C day/night) and decreased (4 degrees C) temperature. The quantitative results were obtained for anthocyanins with MALDI-TOF MS using ferulic acid as a matrix. The amounts of anthocyanins in leaves of A. thaliana varied from 0.3-2.5 microg per gram of leaves for ecotypes Col-0 and C24, respectively, and contents of these markedly increased in plants grown in the cold. The applied analytical method exhibited better repeatability of measurements than obtained with an HPLC/ion trap MS system.
Journal of Mass Spectrometry | 2015
Anna Piasecka; Aneta Sawikowska; Paweł Krajewski; Piotr Kachlicki
Structural analysis via HPLC-ESI-MSn, UPLC-HESI-MS/MS and NMR reported 152 phenolic secondary metabolites in spring barley seedlings (Hordeum vulgare L.). Flavonoids with various patterns of glycosylation and acylation, as well as hydroxycinnamic acid glycosides, esters and amides, were identified in methanolic extracts from leaves of nine varieties of barley originating from different regions of the world. Hordatines derivatives, flavones acylated directly on the aglycone, and hydroxyferulic acid derivatives deserve special attention. Preparative chromatography enabled characterization of a number of compounds at trace levels with the 6-C-[6″-O-glycosyl]-glycosides and the 6-C-[2″,6″-di-O-glycosides]-glucoside structure of flavones. Derivatives of flavonols, quercetin and isorhamnetin were observed only in Syrian varieties. The ultra performance liquid chromatography profiles of UV-absorbing secondary metabolites were used for chemotaxonomic comparison between nine varieties of barley from different climatic conditions. The hierarchical clustering of bred lines from the Fertile Crescent and European and American varieties indicates a great diversity of chemical phenotypes within barley species.
Molecules | 2016
Piotr Kachlicki; Anna Piasecka; Maciej Stobiecki; Łukasz Marczak
Mass spectrometry is currently one of the most versatile and sensitive instrumental methods applied to structural characterization of plant secondary metabolite mixtures isolated from biological material including flavonoid glycoconjugates. Resolution of the applied mass spectrometers plays an important role in structural studies of mixtures of the target compounds isolated from biological material. High-resolution analyzers allow obtaining information about elemental composition of the analyzed compounds. Application of various mass spectrometric techniques, including different systems of ionization, analysis of both positive and negative ions of flavonoids, fragmentation of the protonated/deprotonated molecules and in some cases addition of metal ions to the studied compounds before ionization and fragmentation, may improve structural characterization of natural products. In our review we present different strategies allowing structural characterization of positional isomers and isobaric compounds existing in class of flavonoid glycoconjugates and their derivatives, which are synthetized in plants and are important components of the human food and drugs as well as animal feed.