Piotr Majdak
Austrian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Piotr Majdak.
Journal of the Acoustical Society of America | 2006
Piotr Majdak; Bernhard Laback; Wolf-Dieter Baumgartner
Bilateral cochlear implant (CI) listeners currently use stimulation strategies which encode interaural time differences (ITD) in the temporal envelope but which do not transmit ITD in the fine structure, due to the constant phase in the electric pulse train. To determine the utility of encoding ITD in the fine structure, ITD-based lateralization was investigated with four CI listeners and four normal hearing (NH) subjects listening to a simulation of electric stimulation. Lateralization discrimination was tested at different pulse rates for various combinations of independently controlled fine structure ITD and envelope ITD. Results for electric hearing show that the fine structure ITD had the strongest impact on lateralization at lower pulse rates, with significant effects for pulse rates up to 800 pulses per second. At higher pulse rates, lateralization discrimination depended solely on the envelope ITD. The data suggest that bilateral CI listeners benefit from transmitting fine structure ITD at lower pulse rates. However, there were strong interindividual differences: the better performing CI listeners performed comparably to the NH listeners.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Bernhard Laback; Piotr Majdak
Interaural time difference (ITD) arises whenever a sound outside of the median plane arrives at the two ears. There is evidence that ITD in the rapidly varying fine structure of a sound is most important for sound localization and for understanding speech in noise. Cochlear implants (CIs), neural prosthetic devices that restore hearing in the profoundly deaf, are increasingly implanted to both ears to provide implantees with the advantages of binaural hearing. CI listeners have been shown to be sensitive to fine structure ITD at low pulse rates, but their sensitivity declines at higher pulse rates that are required for speech coding. We hypothesize that this limitation in electric stimulation is at least partially due to binaural adaptation associated with periodic stimulation. Here, we show that introducing binaurally synchronized jitter in the stimulation timing causes large improvements in ITD sensitivity at higher pulse rates. Our experimental results demonstrate that a purely temporal trigger can cause recovery from binaural adaptation. Thus, binaurally jittered stimulation may improve several aspects of binaural hearing in bilateral recipients of neural auditory prostheses.
Archive | 2013
P. L. Søndergaard; Piotr Majdak
The Auditory Modeling Toolbox, AMToolbox, is a Matlab/Octave toolbox for developing and applying auditory perceptual models with a particular focus on binaural models. The philosophy behind the AMToolbox is the consistent implementation of auditory models, good documentation, and user-friendly access in order to allow students and researchers to work with and to advance existing models. In addition to providing the model implementations, published human data and model demonstrations are provided. Further, model implementations can be evaluated by running so-called experiments aimed at reproducing results from the corresponding publications. AMToolbox includes many of the models described in this volume. It is freely available from http://amtoolbox.sourceforge.net
Journal of the Acoustical Society of America | 2009
Wolfgang Kreuzer; Piotr Majdak; Zhengsheng Chen
Head-related transfer functions (HRTFs) play an important role in spatial sound localization. The boundary element method (BEM) can be applied to calculate HRTFs from non-contact visual scans. Because of high computational complexity, HRTF simulations with BEM for the whole head and pinnae have only been performed for frequencies below 10 kHz. In this study, the fast multipole method (FMM) is coupled with BEM to simulate HRTFs for a wide frequency range. The basic approach of the FMM and its implementation are described. A mesh with over 70 000 elements was used to calculate HRTFs for one subject. With this mesh, the method allowed to calculate HRTFs for frequencies up to 35 kHz. Comparison to acoustically-measured HRTFs has been performed for frequencies up to 16 kHz, showing a good congruence below 7 kHz. Simulations with an additional shoulder mesh improved the congruence in the vertical direction. Reduction in the mesh size by 5% resulted in a substantially-worse representation of spectral cues. The effects of temperature and mesh perturbation were negligible. The FMM appears to be a promising approach for HRTF simulations. Further limitations and potential advantages of the FMM-coupled BEM are discussed.
Archive | 2013
Robert Baumgartner; Piotr Majdak; Bernhard Laback
Sound localization in sagittal planes, SPs, including front-back discrimination, relies on spectral cues resulting from the filtering of incoming sounds by the torso, head and pinna. While acoustic spectral features are well-described by head-related transfer functions, HRTFs, models for SP localization performance have received little attention. In this article, a model predicting SP localization performance of human listeners is described. Listener-specific calibrations are provided for 17 listeners as a basis to predict localization performance in various applications. In order to demonstrate the potential of this listener-specific model approach, predictions for three applications are provided, namely, the evaluation of non-individualized HRTFs for binaural recordings, the assessment of the quality of spatial cues for the design of hearing-assist devices and the estimation and improvement of the perceived direction of phantom sources in surround-sound systems.
Journal of the Acoustical Society of America | 2013
Piotr Majdak; Thomas E. Walder; Bernhard Laback
Sound localization in the sagittal planes, including the ability to distinguish front from back, relies on spectral features caused by the filtering effects of the head, pinna, and torso. It is assumed that important spatial cues are encoded in the frequency range between 4 and 16 kHz. In this study, in a double-blind design and using audio-visual training covering the full 3-D space, normal-hearing listeners were trained 2 h per day over three weeks to localize sounds which were either band limited up to 8.5 kHz or spectrally warped from the range between 2.8 and 16 kHz to the range between 2.8 and 8.5 kHz. The training effect for the warped condition exceeded that for procedural task learning, suggesting a stable auditory recalibration due to the training. After the training, performance with band-limited sounds was better than that with warped ones. The results show that training can improve sound localization in cases where spectral cues have been reduced by band-limiting or remapped by warping. This suggests that hearing-impaired listeners, who have limited access to high frequencies, might also improve their localization ability when provided with spectrally warped or band-limited sounds and adequately trained on sound localization.
Journal of the Acoustical Society of America | 2010
Matthew J. Goupell; Piotr Majdak; Bernhard Laback
Using a vocoder, median-plane sound localization performance was measured in eight normal-hearing listeners as a function of the number of spectral channels. The channels were contiguous and logarithmically spaced in the range from 0.3 to 16 kHz. Acutely testing vocoded stimuli showed significantly worse localization compared to noises and 100 pulses click trains, both of which were tested after feedback training. However, localization for the vocoded stimuli was better than chance. A second experiment was performed using two different 12-channel spacings for the vocoded stimuli, now including feedback training. One spacing was from experiment 1. The second spacing (called the speech-localization spacing) assigned more channels to the frequency range associated with speech. There was no significant difference in localization between the two spacings. However, even with training, localizing 12-channel vocoded stimuli remained worse than localizing virtual wideband noises by 4.8 degrees in local root-mean-square error and 5.2% in quadrant error rate. Speech understanding for the speech-localization spacing was not significantly different from that for a typical spacing used by cochlear-implant users. These experiments suggest that current cochlear implants have a sufficient number of spectral channels for some vertical-plane sound localization capabilities, albeit worse than normal-hearing listeners, without loss of speech understanding.
international conference on acoustics, speech, and signal processing | 2011
Piotr Majdak; Peter Balazs; Wolfgang Kreuzer; Monika Dörfler
Exponential sweeps are widely used to measure impulse responses of electro-acoustic systems. Measurements are often contaminated by environmental noise and nonlinear distortions. We propose a method to increase the signal-to-noise ratio (SNR) by denoising the recorded signal in the time-frequency plane. In contrast to state-of-the art denoising methods, no assumption about the spectral characteristics of the noise is required. Numerical simulations demonstrate improvements in the SNR under low-SNR conditions even for measurements contaminated by colored noise.
Journal of the Acoustical Society of America | 2009
Piotr Majdak; Bernhard Laback
The effects of center frequency and pulse rate on the sensitivity to ongoing envelope interaural time differences (ITDs) were investigated using bandpass-filtered pulse trains. Three center frequencies (4.6, 6.5, and 9.2 kHz) were tested with bandwidths scaled to stimulate an approximately constant range on the basilar membrane. The pulse rate was varied from 200 to 588 pps (pulses per seconds). Five normal-hearing (NH) subjects were tested. Averaged over all rates, the results show a small decrease in sensitivity with increasing center frequency. For all center frequencies, sensitivity decreases with increasing pulse rate, yielding a rate limit of approximately 500 pps. The lack of an interaction between pulse rate and center frequency indicates that auditory filtering was not the rate limiting factor in ITD perception and suggests the existence of other limiting mechanisms, such as phase locking or more central processes. It is concluded that the comparison of the rate limits in ITD perception between cochlear-implant listeners and NH subjects listening to high-frequency bandpass-filtered pulse trains is not confounded by the choice of center frequency of stimulation in NH listeners.
Journal of the Acoustical Society of America | 2013
Piotr Majdak; Bruno Masiero; Janina Fels
The sound-source localization provided by a crosstalk cancellation (CTC) system depends on the head-related transfer functions (HRTFs) used for the CTC filter calculation. In this study, the horizontal- and sagittal-plane localization performance was investigated in humans listening to individualized matched, individualized but mismatched, and non-individualized CTC systems. The systems were simulated via headphones in a binaural virtual environment with two virtual loudspeakers spatialized in front of the listener. The individualized mismatched system was based on two different sets of listener-individual HRTFs. Both sets provided similar binaural localization performance in terms of quadrant, polar, and lateral errors. The individualized matched systems provided performance similar to that from the binaural listening. For the individualized mismatched systems, the performance deteriorated, and for the non-individualized mismatched systems (based on HRTFs from other listeners), the performance deteriorated even more. The direction-dependent analysis showed that mismatch and lack of individualization yielded a substantially degraded performance for targets placed outside of the loudspeaker span and behind the listeners, showing relevance of individualized CTC systems for those targets. Further, channel separation was calculated for different frequency ranges and is discussed in the light of its use as a predictor for the localization performance provided by a CTC system.