Piotr Rychter
Jan Długosz University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Piotr Rychter.
Journal of Hazardous Materials | 2014
Robert Biczak; Barbara Pawłowska; Piotr Bałczewski; Piotr Rychter
From the environmental protection point of view, the growing interest of ionic liquids in various industrial branches has raised concerns for the toxicity assessment of these compounds. The paper discusses the effect of salts containing the shared 1-ethyl-3-methylimidazolium [EMIM] cation as coupled with five different anions: bromide [Br], nitrate [NO3], p-toluenesulfonate (tosylate) [Ts], dimethylphosphate [dMP] and methanesulfonate [MS] on the growth and development of higher land plants - spring barley and common radish. The experiment was done according to the ISO Standard 11269-2:1995 and the OECD/OCDE Guide 208/2006. As the indications of phytotoxicity, the percentage of sprouts and the level of dry and fresh plant mass were used; in addition, the visual assessment of any signs of damage to the examined plant species, such as growth inhibition and chlorotic changes, was also made. Results of our study has proved the negative impact of ILs on the tested plants and the toxic effect of imidazolium salts was dependent primarily on the applied ionic liquids concentration. The common radish revealed the higher tolerance to the imidazolium as compared to spring barley. The anion type of ionic liquid was crucial for the toxicity against common radish.
Biomacromolecules | 2010
Piotr Rychter; Michal Kawalec; Michał Sobota; Piotr Kurcok; Marek Kowalczuk
Degradation of poly[(1,4-butylene terephthalate)-co-(1,4-butylene adipate)] (Ecoflex, BTA) monofilaments (rods) in standardized sandy soil was investigated. Changes in the microstructure and chemical composition distribution of the degraded BTA samples were evaluated and changes in the pH and salinity of postdegradation soil, as well as the soil phytotoxicity impact of the degradation products, are reported. A macroscopic and microscopic evaluation of the surface of BTA rod samples after specified periods of incubation in standardized soil indicated erosion of the surface of BTA rods starting from the fourth month of their incubation, with almost total disintegration of the incubated BTA material observed after 22 months. However, the weight loss after this period of time was about 50% and only a minor change in the M(w) of the investigated BTA samples was observed, along with a slight increase in the dispersity (from an initial 2.75 up to 4.00 after 22 months of sample incubation). The multidetector SEC and ESI-MS analysis indicated retention of aromatic chain fragments in the low molar mass fraction of the incubated sample. Phytotoxicity studies revealed no visible damage, such as necrosis and chlorosis, or other inhibitory effects, in the following plants: radish, cres, and monocotyledonous oat, indicating that the degradation products of the investigated BTA copolyester are harmless to the tested plants.
Journal of Agricultural and Food Chemistry | 2013
Agnieszka Matusiak; Jarosław Lewkowski; Piotr Rychter; Robert Biczak
The aim of this work was to synthesize selected furaldimines and their aminophosphonic derivatives and evaluation the phytotoxicity of new obtained products according to OECD 208 Guideline. Four Schiff bases, N-furfurylidene-p-anisidine (1a), N-furfurylidene-p-toluidine (1b), N-furfurylidene-benzhydrylamine (1c), and N-(2-nitrofurfurylidene)-p-toluidine (1d) were synthesized and three new furan-derived N-substituted aminomethylphosphonic acids, namely: 2-furyl N-(p-methoxyphenyl)-aminomethylphosphonic acid (2a), 2-furyl N-(p-methylphenyl)-aminomethylphosphonic acid (2b) and 2-furyl N-(diphenylmethyl)-aminomethylphosphonic acid (2c) were synthesized by the addition of in situ generated bis-(trimethylsilyl) phosphite to azomethine bond of corresponding Schiff bases 1a-c. Three Schiff bases 1a-b and 1d as well as all three aminophosphonic acids 2a-c were analyzed in regard with their phytotoxicity toward two plants, radish (Raphanus sativus) and oat (Avena sativa). It has been found that tested N-furfurylidene-p-anisidine (1a), N-(2-nitrofurfurylidene)-p-toluidine (1d) and aminophosphonic acids 2a-c are toxic for selected plants. N-furfurylidene-p-toluidine (1b) did not show any ecotoxicological impact in used plant growth test.
Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2014
Robert Biczak; Piotr Bałczewski; Barbara Pawłowska; Barbara Bachowska; Piotr Rychter
Abstract Ionic liquids have attracted considerable interest in various areas as new, non-volatile and non-flammable organic solvents, catalysts, reaction additives, ligands, drugs and other dedicated materials etc. Their general use, sometimes in bulky quantities, requires determination of their potential ecotoxicity on selected organisms. In the present work, influence of triphenylmethylphosphonium iodide (1) and triphenylhexadecylphosphonium iodide (2), introduced to soil, on germination and early stages of growth and development of superior plants was investigated using the plant growth test based on the OECD/OCDE 208/2006. In this test, the seeds of selected species, i.e. land superior plants - spring barley (Hordeum vulgare) and common radish (Raphanus sativus L. subvar. radicula Pers.) were planted in pots containing soil to which a test chemical compound had been added and in pots with control soil. To evaluate the phytotoxicity of ionic liquids 1 and 2 germination and weight (dry and fresh) of control plant seedlings were determined and compared with the germination and weight (dry and fresh) of the seedlings of plants grown in the soil watered with appropriate amounts of the test chemicals. The visual assessment of any types of damage to the test species, such as growth inhibition, chlorosis and necrosis, was also carried out and documented by digital photographs. Based on the obtained results, magnitudes of the LOEC - the lowest concentration causing observable effects in the form of reduction in growth and germination compared with the control and the NOEC - the highest concentration not causing observable, toxic effects - were also determined.
Carbohydrate Polymers | 2016
Piotr Rychter; Marta Kot; Krzysztof Bajer; Diana Rogacz; Alena Šišková; Janusz Kapuśniak
The utilization of starch films, obtained by extrusion of potato starch with urea as plasticizer, for the fertilization of plants has been undertaken. Release rate of urea from the starch films was conducted in water conditions. The molecular weight distribution, surface erosion and weight loss of the starch samples have been determined. The evaluation of efficiency of urea as a fertilizer in the process of release from the starch films was performed under laboratory conditions based on the plant growth test proposed by OECD 208 Guideline and the PN-ISO International Standard using oat and common radish. Although among extruded starch-based films, those that contain the highest amount of fertilizer hold the most promise for a delayed release system, the time of release of fertilizer from obtained films in undertaken study was not satisfactory. All the same, in the present study effort has been made to utilize extruded samples as a fertilizer for agriculture or horticulture purposes. Urea-plasticized starch was successfully used as a fertilizer. Plant growth assessment, including determination of such parameters as fresh and dry matter of plants and their visual evaluation, has proved the stimulating effect of using extruded films on the growth and development of cultivated plants.
Journal of Biomedical Materials Research Part A | 2015
Piotr Rychter; Elzbieta Pamula; Arkadiusz Orchel; Urszula Posadowska; Małgorzata Krok-Borkowicz; Anna Kaps; Natalia Smigiel-Gac; A. Smola; Janusz Kasperczyk; Wojciech Prochwicz; Piotr Dobrzynski
The aim of the presented study was preparation, analysis of properties, and in vitro characterization of porous shape-memory scaffolds, designed for large bone defects treatment using minimally invasive surgery approach. Biodegradable terpolymers of l-lactide/glycolide/trimethylene carbonate (LA/GL/TMC) and l-lactide/glycolide/ε-caprolactone (LA/GL/Cap) were selected for formulation of these scaffolds. Basic parameters of shape memory behavior (i.e. recovery ratio, recovery time) and changes in morphology (SEM, average porosity) and properties (surface topography, water contact angle, compressive strength) during shape memory cycle were characterized. The scaffolds preserved good mechanical properties (compressive strength about 0.7 to 0.9 MPa) and high porosity (more than 80%) both in initial shape as well as after return from compressed shape. Then the scaffolds in temporary shape were inserted into the model defect of bone tissue at 37°C. After 12 min the defect was filled completely as a result of shape recovery process induced by body temperature. The scaffold obtained from LA/GL/TMC terpolymer was found the most prospective for the planned application thanks to its appropriate recovery time, high recovery ratio (more than 90%), and cytocompatibility in contact with human osteoblasts and chondrocytes.
Polish Journal of Chemical Technology | 2011
Marta Musioł; Joanna Rydz; Wanda Sikorska; Piotr Rychter; Marek Kowalczuk
A preliminary study of the degradation of selected commercial packaging materials in compost and aqueous environments The paper presents the results of the degradation of two commercial packaging materials CONS-PET and BioPlaneta in the compost and distilled water at 70°C. The materials containing polylactide (PLA), CONS-PET 13% and BioPlaneta 20%, aliphatic-aromatic copolyester terephthalic acid/adipic acid/1,4-butanediol (BTA) and commercial additives degraded under the industrial composting conditions (composting pile or container) and in distilled water at 70°C in the laboratory holding oven. Distilled water provided the conditions for the hydrolytic (abiotic) degradation of the materials. Weight loss, changes of molecular weight, dispersity monitored via the GPC technique and the macroscopic surface changes of the tested materials were monitored during the experiments. The investigated systems show similar trends of degradation, however on the last day of the incubation the decrease of the molecular weight was higher in water than under the industrial composting conditions. The results indicate that commercial packaging materials can be degraded both while composting ((bio)degradation) and during the incubation in distilled water at 70°C (abiotic hydrolysis).
Molecules | 2016
Jarosław Lewkowski; Zbigniew Malinowski; Agnieszka Matusiak; Marta Morawska; Diana Rogacz; Piotr Rychter
The aim of this work was to synthesize selected thiophene-derived aminophosphonic systems and evaluate the phytotoxicity of newly obtained products according to the OECD 208 Guideline. Seven new thiophene-derived N-substituted dimethyl aminomethylphosphonic acid esters 2a–h were synthesized by the addition of an appropriate phosphite to azomethine bond of starting Schiff bases 1a–h, and NMR spectroscopic properties of aminophosphonates were investigated. These eight compounds were analyzed in regard to their phytotoxicity towards two plants, radish (Raphanus sativus) and oat (Avena sativa). On the basis of the obtained results, it was found that tested aminophosphonates 2a–h showed an ecotoxicological impact against selected plants, albeit to various degrees.
Journal of Inclusion Phenomena and Macrocyclic Chemistry | 2013
Tomasz Girek; Tomasz M. Goszczyński; Beata Girek; Wojciech Ciesielski; Piotr Rychter
The design of proteins whose structure and function can be manipulated by binding with specific ligands such as cyclodextrins, has been of great interest in the field of protein engineering and also could be used as drug delivery systems in targeted cancer therapy (Loftsson and Duchêne, Int. J. Pharm. 329:1–11, 1; Loftsson et al., Expert. Opin. Drug Deliv. 2:335–351, 2). CD/proteins conjugates are synthesized using original high temperature method in which mono-6-O-formyl-β-CD reacts with two proteins: basic pancreatic trypsin inhibitor and lysozyme. The proposed synthesis method has a high reproducibility which makes it useful for pharmaceutical purposes. That method allows to obtain the conjugate without losing protein’s biological and enzymatic activity which will used in the reaction, and without violating the chemical structure of cyclodextrin molecules.
Ecotoxicology | 2017
Jarosław Lewkowski; Marta Morawska; Rafał Karpowicz; Piotr Rychter; Diana Rogacz; Kamila Lewicka; Piotr Dobrzynski
Six new dimethyl N-arylamino(2-pyrrolyl)methylphosphonates 2a–f were synthesized by the modified aza-Pudovik reaction. Their ecotoxicological impact using battery of bioassay was assessed using Microtox and Ostracodtoxit tests as well as phytotoxicity towards two plants, dicotyledonous radish (Raphanus sativus) and monocotyledonous oat (Avena sativa) following the OECD 208 Guideline. Ecotoxicological properties of compounds 2a–f in aspect of acute and chronic toxicity were evaluated using Heterocypris incongruens and Aliivibrio fisheri tests. The obtained results showed that tested aminophosphonates 2a–f have moderate-to-high phyto- and ecotoxicological impact. They are toxic for both plants but more toxic against dicotyledonous. The investigated compounds showed important ecotoxicity against Heterocypris incongruens crustaceans and Aliivibrio fisheri bacteria. It was found that the substituents of the phenyl ring plays a key role in the degree of toxicity. Results showed that investigated compounds are ecologically toxic and that any of their application should be implemented with care.