Piotr Setny
University of Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Piotr Setny.
Journal of Chemical Theory and Computation | 2010
Piotr Setny; Riccardo Baron; J. Andrew McCammon
Hydrophobic association is often recognized as being driven by favorable entropic contributions. Here, using explicit solvent molecular dynamics simulations we investigate binding in a model hydrophobic receptor−ligand system which appears, instead, to be driven by enthalpy and opposed by entropy. We use the temperature dependence of the potential of mean force to analyze the thermodynamic contributions along the association coordinate. Relating such contributions to the ongoing changes in system hydration allows us to demonstrate that the overall binding thermodynamics is determined by the expulsion of disorganized water from the receptor cavity. Our model study sheds light on the solvent-induced driving forces for receptor−ligand association of general, transferable relevance for biological systems with poorly hydrated binding sites.
Journal of Physical Chemistry B | 2008
Julia Romanowska; Piotr Setny; Joanna Trylska
Many aminoglycosidic antibiotics target the A-site of 16S RNA in the small ribosomal subunit and affect the fidelity of protein translation in bacteria. Upon binding, aminoglycosides displace two adenines (A1492 and A1493 for E. coli numbering) that are involved in tRNA anticodon loop recognition. The major difference in the aminoglycosidic binding site between the prokaryota and eukaryota is an adenine into guanine substitution in the position 1408. This mutation likely affects the dynamics of near A1492 and A1493 and hinders the binding of aminoglycosides to eukaryotic ribosomes. With multiple 20 ns long all-atom molecular dynamics simulations, we study the flexibility of a 22 nucleotide RNA fragment which mimics the aminoglycosidic binding site. Simulations are carried out for both native and A1408G mutated RNA as well as for their complexes with aminoglycosidic representative paromomycin. We observe intra- and extrahelical configurations of A1492 and A1493, which differ between the prokaryotic and the mutated structure. We obtain configurations of the A-site that are also observed in the NMR and crystal structures. Our studies show the differences in the internal mobility of the A-site, as well as that in ion and water density distributions inside of the binding cleft, between the prokaryotic and mutated RNA. We also compare the performance of two force field parameters for RNA, Amber and Charmm.
Journal of Chemical Physics | 2006
Piotr Setny; Maciej Geller
The structure and dynamics of water in the vicinity of the hemispherical hydrophobic pocket of 8 A radius were examined via molecular dynamics simulations in NVT ensemble. Density, hydrogen bonding properties, and residence times of water molecules were projected on two-dimensional planes providing a spatial description of water behavior. We found that the average water density is significantly depleted relative to bulk value. A detailed analysis of pocket occupancy revealed fluctuations between states of completely empty pocket and a pocket filled with a bulklike fluid, which seem to result from collective behavior of water molecules. Free energy differences accompanying these fluctuations are rather small, suggesting that the given pocket radius is close to the critical one for transition between gas and liquid phases in the considered system. We show that the situation is different in the case of a simple Lennard-Jones fluid. These results indicate that changing the surface curvature from flat to concave may lead to qualitative difference in water behavior in its vicinity. We think that our studies may also put some light on binding site desolvation process which is necessary to understand to make correct predictions of binding energies.
Journal of Chemical Theory and Computation | 2013
Piotr Setny; Martin Zacharias
Elastic network models (ENMs) are a useful tool for describing large scale motions in protein systems. While they are well validated in the context of proteins, relatively little is known about their applicability to nucleic acids, whose different architecture does not necessarily warrant comparable performance. In this study we thoroughly evaluate and optimize the efficiency of popular ENMs for capturing RNA and DNA flexibility. We also introduce two alternative models in which the strength of elastic connections at a coarse-grained level is governed by distance distribution at atomic resolution. For each of the considered ENMs we report the optimal length of spring connections as well as the scaling of elastic force constants that provides the best agreement of vibrational frequencies with normal modes based on atomic force field. In order to determine the absolute values of force constants we introduce a novel method based on the overlap of pseudoinverse of Hessian matrices.
Journal of Chemical Information and Modeling | 2009
Piotr Setny; Joanna Trylska
Aminoglycosides are antibiotics targeting the 16S RNA A site of the bacterial ribosome. There have been many efforts directed toward design of their synthetic derivatives, however with only few successes. As RNA binders, aminoglycosides are also a difficult target for computational drug design, since most of the existing methods were developed for protein ligands. Here, we present an approach that allows for evading the problems related to still poorly developed RNA docking and scoring algorithms. It is aimed at identification of new molecular scaffolds potentially binding to the A site. The considered molecules are based on the neamine core, which is common for all aminoglycosides and provides specificity toward the binding site, linked with diverse molecular fragments via its O5 or O6 oxygen atom. Suitable fragments are selected with the use of 3D searches of molecular fragments library against two distinct pharmacophores designed on the basis of available structural data for aminoglycoside-RNA complexes. The compounds resulting from fragments assembly with neamine are then scored with a 3D-QSAR model developed using the biological data for known aminoglycoside derivatives. Twenty-one new potential ligands are obtained, four of which have predicted activities comparable to less potent aminoglycoside antibiotics.
Journal of Physical Chemistry B | 2010
Piotr Setny; Martin Zacharias
A simple, semiheuristic solvation model based on a discrete, BCC grid of solvent cells has been presented. The model utilizes a mean field approach for the calculation of solute-solvent and solvent-solvent interaction energies and a cellular automata based algorithm for the prediction of solvent distribution in the presence of solute. The construction of the effective Hamiltonian for a solvent cell provides an explicit coupling between orientation-dependent water-solute electrostatic interactions and water-water hydrogen bonding. The water-solute dispersion interaction is also explicitly taken into account. The model does not depend on any arbitrary definition of the solute-solvent interface nor does it use a microscopic surface tension for the calculation of nonpolar contributions to the hydration free energies. It is demonstrated that the model provides satisfactory predictions of hydration free energies for drug-like molecules and is able to reproduce the distribution of buried water molecules within protein structures. The model is computationally efficient and is applicable to arbitrary molecules described by atomistic force field.
Journal of Physical Chemistry B | 2012
Riccardo Baron; Piotr Setny; Francesco Paesani
It is becoming increasingly evident that water plays an active role in noncovalent receptor-ligand association. In this study, hydrophobic cavity-ligand association in a model system is characterized through the analysis of the structure, dynamics, and corresponding spectral signatures of water at different stages of the binding process. Molecular dynamics simulations reveal that the reorientation of the water molecules around the ligand becomes faster as the receptor-ligand distance reduces, which is correlated with the decrease in number of water-water hydrogen bonds within the ligand hydration shells. Prompted by the need for calculating physical quantities that can be amenable to experimental validation, the changes in the spectroscopic features upon cavity-ligand binding are investigated. The analysis of both linear and nonlinear infrared spectra allows direct insight into the evolution of water structure and dynamics around the ligand. In particular, characteristic spectroscopic features emerge at key stages of the binding process, which are related to changes in the hydrogen-bond topology of water around the ligand. This study demonstrates that computer simulations and vibrational spectroscopy could be integrated to facilitate the direct study of solvent effects in biomolecular association.
Journal of Chemical Theory and Computation | 2015
Piotr Setny
Buried water molecules are ubiquitous in protein structures and are found at the interface of most protein-ligand complexes. Determining their distribution and thermodynamic effect is a challenging yet important task, of great of practical value for the modeling of biomolecular structures and their interactions. In this study, we present a novel method aimed at the prediction of buried water molecules in protein structures and estimation of their binding free energies. It is based on a semiexplicit, discrete solvation model, which we previously introduced in the context of small molecule hydration. The method is applicable to all macromolecular structures described by a standard all-atom force field, and predicts complete solvent distribution within a single run with modest computational cost. We demonstrate that it indicates positions of buried hydration sites, including those filled by more than one water molecule, and accurately differentiates them from sterically accessible to water but void regions. The obtained estimates of water binding free energies are in fair agreement with reference results determined with the double decoupling method.
Proteins | 2004
Piotr Setny; Maciej Geller
Free energy differences of binding of adenosine triphosphate (ATP) and guanine triphosphate (GTP) to the protein kinase CK2 (casein kinase 2) were calculated, using molecular dynamics (MD) simulations and the thermodynamic cycle approach. Good agreement with experimental data was obtained. Simulations confirm observations based on crystallographic data that specifically interacting water molecules in the binding site region of CK2 kinase play a key role in its ability to use ATP or GTP as equally efficient phosphate donors. We point out that to obtain quantitatively reasonable results, it was necessary to modify original X‐ray data by assuming the presence of an additional water molecule in the CK2 binding site structure with GTP. Proteins 2005.
Biochimica et Biophysica Acta | 2017
Remigiusz Worch; Joanna Krupa; Alicja Filipek; Anna Szymaniec; Piotr Setny
The N-terminal fragment of the viral hemagglutinin HA2 subunit is termed a fusion peptide (HAfp). The 23-amino acid peptide (HAfp1-23) contains three C-terminal W21-Y22-G23 residues which are highly conserved among serotypes of influenza A and has been shown to form a tight helical hairpin very distinct from the boomerang structure of HAfp1-20. We studied the effect of peptide length on fusion properties, structural dynamics, and binding to the membrane interface. We developed a novel fusion visualization assay based on FLIM microscopy on giant unilamellar vesicles (GUV). By means of molecular dynamics simulations and spectroscopic measurements, we show that the presence of the three C-terminal W21-Y22-G23 residues promotes the hairpin formation, which orients perpendicularly to the membrane plane and induces more disorder in the surrounding lipids than the less structured HAfp1-20. Moreover, we report cholesterol-enriched domain formation induced exclusively by the longer fusion peptide.