Piotr Smarzewski
Lublin University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Piotr Smarzewski.
Journal of Natural Fibers | 2017
Danuta Barnat-Hunek; Piotr Smarzewski; Przemysław Brzyski
ABSTRACT This article presents the results of research concerning lightweight composites produced on the basis of lime, cement, and clay binders, with the addition of perlite, hemp shives, and flax straw. Tests of physical and mechanical properties of composites were performed and their basic characteristics were determined, i.e. absorptivity, density, thermal conductivity coefficient, and compressive and flexural strength. The study was conducted to determine the use of hemp and flax composites to fill the frames of a wooden house. The results prove that the composites have low thermal conductivity, apparent density, and low strength properties compared with conventional building materials.
Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2014
Zbigniew Suchorab; Danuta Barnat-Hunek; Piotr Smarzewski; Zbyšek Pavlík; Robert Černý
Abstract The article presents information about moisture protection of building materials. The discussed parameters determining the efficiency of the water protection are material porosity, water absorptivity and surface condition of building materials. Moreover the ecological aspect of hydrophobic VOC-free preparations available on the market has been underlined. The first part of the article is a description of moisture problem in the building envelopes and the possibilities of its prevention. The special attention is put on the electric methods of moisture estimation with a special emphasis on the Time Domain Reflectometry (TDR) method. The second part of the article is devoted an experiment of model red-brick walls exhibited on capillary uptake process. For the experiment three model red-brick walls were built and prepared for water uptake process. The experiment was monitored by the capacitive and surface TDR probes thanks to which the necessity of sampling and material destruction could be avoided. Conducted experiments show the progress of water uptake phenomenon in the model walls which differ in type of protection against moisture and prove the potential of the non-invasive measurements using the surface TDR probes. Basic physical parameters of the applied bricks were determined together with the reflectometric measurements. Furthermore, Scanning Electron Microscopy (SEM) was used to analyze the hydrophobic layer continuity. Abstrakt W artykule przedstawiono parametry materiałów budowlanych, które wpływają na skuteczność stosowania preparatów hydrofobowych. Należą do nich porowatość, nasiąkliwość i stan powierzchni. Podkreślono również ekologiczne aspekty stosowania dostępnych na rynku budowlanym hydrofobowych preparatów wolnych od lotnych związków organicznych. Pierwsza część pracy jest omówieniem problemów wilgotnościowych w przegrodach budowlanych. Duży nacisk położono na elektryczne techniki detekcji wilgoci ze szczególnym uwzględnieniem metody TDR. Druga część ma charakter eksperymentalny. W celu zbadania zjawiska podciągania kapilarnego przygotowano trzy modelowe ścianki z cegły ceramicznej pełnej. Omawiany proces był monitorowany za pomocą czujników pojemnościowych oraz powierzchniowych sond TDR. Uzyskane wyniki pozwalają na śledzenie procesu podciągania kapilarnego w modelowych ściankach z cegły ceramicznej różniących się od siebie rodzajem zastosowanego preparatu hydrofobowego i potwierdzają możliwości sondy powierzchniowej TDR w pomiarach wilgotnościowych murów. Równolegle do badań za pomocą technik elektrycznych wyznaczono podstawowe parametry fizyczne cegły wykorzystanej do wymurowania ścianek, wykonano również zdjęcia za pomocą skaningowego mikroskopu elektronowego (SEM) w celu przeanalizowania ciągłości warstwy hydrofobowej.
IOP Conference Series: Materials Science and Engineering | 2017
Piotr Smarzewski; Adam Stolarski
Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.
Biuletyn Wojskowej Akademii Technicznej | 2016
Piotr Smarzewski
This article discusses numerical solution of a reinforced concrete beam. The modelling was conducted with the rules of the finite element method (Fem). in order to verify the correctness of the assumed material’s models: concrete and reinforcing steel, the results obtained with the arc-length method finite analysis were compared with experimental data. The method had been verified in the beam spatial model, in which concrete crushing at compressive and concrete stiffening at tensile are dominant phenomena. The arc-length method is the only one to offer the possibility of obtaining a complete load-deflection curve with local and global softening.
Biuletyn Wojskowej Akademii Technicznej | 2016
Piotr Smarzewski; Danuta Barnat-Hunek
The purpose of this article is to determine the influence of the type of fibers on fracture parameters of high performance concrete (HPC). In this study there were two types of coarse aggregate used: granite and granodiorite with a grain size of about 2/8 mm. Experimental tests were performed on cubic samples, cylinders and notched beams. In the concrete of FRC type, 0.5 and 0.75% of steel fibers and 0.5 and 0.25% of polypropylene fibers respectively, were added. Mean strengths and standard deviations for compression, splitting tensile strength, mean static modulus of elasticity and mean fracture energy were determined. Experimental studies in the 1st fracture model showed that the HPC without the addition of fibers (C), was characterized by brittleness, and fiber concrete (FRC) was more ductile. Fibers were bridging the cracks during loading, delayed hairline cracks and prevented the notched beams from breaking. The shape of the descending curve of the load-deflection depended on the geometry and mechanical properties and the quantity of the fibers used, and in the case of HPC without fiber, on the type of coarse aggregate. In the case of granodiorite aggregate, better mechanical parameters of concrete were observed.
Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2015
Danuta Barnat-Hunek; Piotr Smarzewski; Grzegorz Łagód; Zbigniew Suchorab
Abstract The aim of the research presented in the paper was to evaluate the feasibility of using hydrophobic preparations based on organosilicon compounds for protection treatment of lightweight aggregates modified with municipal sewage sludge. Issues related to the wettability of the surface layer of hydrophobised lightweight-aggregate concrete supplemented with sewage sludge are discussed in the paper. The experimental part of the study is focused on the physical and mechanical characteristics of lightweight-aggregate concrete and the effect of two hydrophobic preparations on the contact angle of the material. The contact angle for lightweight concrete (θw) was determined as a function of time using one measurement liquid. The hydrophobic coatings in the structure of lightweight concrete modified with sewage sludge were shown using electron microscopy. The investigations demonstrated the effectiveness of hydrophobisation of porous lightweight concretes. On the hydrophobic surfaces, the contact angles decreased with time and depended on the preparations used. The results of the research confirm the possibility to produce lightweight aggregate-concretes modified with sewage sludge with appropriate surface protection against external moisture.
Biuletyn Wojskowej Akademii Technicznej | 2015
Piotr Smarzewski
This paper describes numerical solution of a reinforced concrete beam. The modelling was performed with the principles of the Finite element method (Fem). in order to validate the materials models: concrete and reinforcing steel, the results, obtained using the Newton-raphson method with adaptive descent, were compared with experimental data. Simulations help to reduce the cost of experimental research through more efficient carrying out the tests. The solution of advanced problems of reinforced concrete members in the range of linear-elastic deformation and in the range of non-linear deformation leading to the failure is possible.
Chemistry-Didactics-Ecology-Metrology | 2014
Zbigniew Suchorab; Marcin K. Widomski; Grzegorz Łagód; Danuta Barnat-Hunek; Piotr Smarzewski
Abstract The article presents the description of measurement methodology of moisture transport in unsaturated porous materials using Time Domain Reflectometry (TDR) technique on the example of measurement of capillary uptake phenomenon in the sample of autoclaved aerated concrete (AAC). In the paper there are presented basic principles of the TDR method as a technique applied in metrology, its potential for measurement of moisture in porous materials like soils and porous building materials. Second part of the article presents the experiment of capillary rise process in the sample of AAC. Within the experiment moisture content was monitored in the sample exposed on water influence. Monitoring was conducted using TDR FP/mts probes. Preparation of the measuring setup was presented in detail. The TDR readouts post-processing, graphical presentations of the obtained results, short discussion and comparison of TDR readouts to gravimetric measurement were also presented. Abstrakt W artykule przedstawiono opis metodyki pomiaru transportu wilgoci w nienasyconych porowatych materiałach przy wykorzystaniu techniki Time Domain Reflectometry (TDR) na przykładzie pomiarów zjawiska podciągania kapilarnego przez próbkę autoklawizowanego betonu komórkowego. Zaprezentowano podstawowe informacje na temat metody TDR jako techniki stosowanej w metrologii. Omówiono jej potencjał do pomiarów wilgoci w takich ośrodkach porowatych, jak gleby i porowate materiały budowlane. Druga część artykułu przedstawia eksperyment podciągania kapilarnego przez próbkę autoklawizowanego betonu komórkowego. W trakcie trwania eksperymentu monitorowano zmiany wilgotności w próbce wystawionej na oddziaływaniewody. Monitoring realizowano za pomocą sond TDR FP/mts. Rozdział „Materials and Methods” przedstawia szczegółowo przygotowanie stanowiska pomiarowego. W rozdziale „Results” podano odczyty miernika TDR przeliczone na wilgotność oraz zaprezentowano uzyskane wyniki w postaci graficznej. Zawarto w nim również krótką dyskusję wyników i porównanie odczytów TDR z pomiarami grawimetrycznymi.
Advances in Civil Engineering | 2018
Piotr Smarzewski
In this work, an investigation is made to evaluate the flexural toughness of hybrid fibre-reinforced high-performance concrete (HPC) containing different combinations of basalt (B) and polypropylene (P) fibres. The experimental studies consisted of the three-point flexural tests on notched beam specimens. The specimens incorporated basalt/polypropylene (BP) fibres in 11 mixtures with proportions of 0/0, 100/0, 75/25, 50/50, 25/75, and 0/100% by volume at total volume fractions of 1 and 2%. The evaluation of the experimental results was done according to the CECS 13:2009 and PCS (postcrack strength) methods. The results indicate that high-performance concrete containing basalt/polypropylene fibre mixtures of 50/50% and with only polypropylene fibre content of 0/100% can be pronounced as the most appropriate combinations to be used in high-performance concrete for flexural toughness.
international conference on numerical analysis and its applications | 2016
Aleksandr E. Kolesov; Petr V. Sivtsev; Piotr Smarzewski; Petr N. Vabishchevich
In this work we consider numerical analysis of elasticity problem for reinforced concrete deep beams. Main investigation is made to define the effect of presence of steel-polypropylene fibres in concrete mixture for different types of reinforcement. For numerical solution we use finite element method approximation. Numerical realization of method performed on collection of free software FEniCS. As model problem we consider computation of elastically-deformed state of reinforced concrete structure, consisting of concrete matrix and steel reinforcement, loaded in 3-point bending test. Numerical results of three-dimensional problem with complex geometry are presented.