Pippa L. Whitehouse
Durham University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pippa L. Whitehouse.
Science | 2012
Andrew Shepherd; Erik R. Ivins; Geruo A; Valentina Roberta Barletta; Michael J. Bentley; Srinivas Bettadpur; Kate Briggs; David H. Bromwich; René Forsberg; Natalia Galin; Martin Horwath; Stan Jacobs; Ian Joughin; Matt A. King; Jan T. M. Lenaerts; Jilu Li; Stefan R. M. Ligtenberg; Adrian Luckman; Scott B. Luthcke; Malcolm McMillan; Rakia Meister; Glenn A. Milne; J. Mouginot; Alan Muir; Julien P. Nicolas; John Paden; Antony J. Payne; Hamish D. Pritchard; Eric Rignot; Helmut Rott
Warming and Melting Mass loss from the ice sheets of Greenland and Antarctica account for a large fraction of global sea-level rise. Part of this loss is because of the effects of warmer air temperatures, and another because of the rising ocean temperatures to which they are being exposed. Joughin et al. (p. 1172) review how ocean-ice interactions are impacting ice sheets and discuss the possible ways that exposure of floating ice shelves and grounded ice margins are subject to the influences of warming ocean currents. Estimates of the mass balance of the ice sheets of Greenland and Antarctica have differed greatly—in some cases, not even agreeing about whether there is a net loss or a net gain—making it more difficult to project accurately future sea-level change. Shepherd et al. (p. 1183) combined data sets produced by satellite altimetry, interferometry, and gravimetry to construct a more robust ice-sheet mass balance for the period between 1992 and 2011. All major regions of the two ice sheets appear to be losing mass, except for East Antarctica. All told, mass loss from the polar ice sheets is contributing about 0.6 millimeters per year (roughly 20% of the total) to the current rate of global sea-level rise. The mass balance of the polar ice sheets is estimated by combining the results of existing independent techniques. We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth’s polar ice sheets. We find that there is good agreement between different satellite methods—especially in Greenland and West Antarctica—and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by –142 ± 49, +14 ± 43, –65 ± 26, and –20 ± 14 gigatonnes year−1, respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year−1 to the rate of global sea-level rise.
Nature | 2013
Edward Hanna; Francisco Navarro; Frank Pattyn; Catia M. Domingues; Xavier Fettweis; Erik R. Ivins; Robert J. Nicholls; Catherine Ritz; Ben Smith; Slawek Tulaczyk; Pippa L. Whitehouse; H. Jay Zwally
Since the 2007 Intergovernmental Panel on Climate Change Fourth Assessment Report, new observations of ice-sheet mass balance and improved computer simulations of ice-sheet response to continuing climate change have been published. Whereas Greenland is losing ice mass at an increasing pace, current Antarctic ice loss is likely to be less than some recently published estimates. It remains unclear whether East Antarctica has been gaining or losing ice mass over the past 20 years, and uncertainties in ice-mass change for West Antarctica and the Antarctic Peninsula remain large. We discuss the past six years of progress and examine the key problems that remain.
Nature | 2012
Matt A. King; Rory J. Bingham; Phil Moore; Pippa L. Whitehouse; Michael J. Bentley; Glenn A. Milne
Recent estimates of Antarctica’s present-day rate of ice-mass contribution to changes in sea level range from 31 gigatonnes a year (Gt yr−1; ref. 1) to 246 Gt yr−1 (ref. 2), a range that cannot be reconciled within formal errors. Time-varying rates of mass loss contribute to this, but substantial technique-specific systematic errors also exist. In particular, estimates of secular ice-mass change derived from Gravity Recovery and Climate Experiment (GRACE) satellite data are dominated by significant uncertainty in the accuracy of models of mass change due to glacial isostatic adjustment (GIA). Here we adopt a new model of GIA, developed from geological constraints, which produces GIA rates systematically lower than those of previous models, and an improved fit to independent uplift data. After applying the model to 99 months (from August 2002 to December 2010) of GRACE data, we estimate a continent-wide ice-mass change of −69 ± 18 Gt yr−1 (+0.19 ± 0.05 mm yr−1 sea-level equivalent). This is about a third to a half of the most recently published GRACE estimates, which cover a similar time period but are based on older GIA models. Plausible GIA model uncertainties, and errors relating to removing longitudinal GRACE artefacts (‘destriping’), confine our estimate to the range −126 Gt yr−1 to −29 Gt yr−1 (0.08–0.35 mm yr−1 sea-level equivalent). We resolve 26 independent drainage basins and find that Antarctic mass loss, and its acceleration, is concentrated in basins along the Amundsen Sea coast. Outside this region, we find that West Antarctica is nearly in balance and that East Antarctica is gaining substantial mass.
Geophysical Research Letters | 2011
Ian D. Thomas; Matt A. King; Michael J. Bentley; Pippa L. Whitehouse; Nigel T. Penna; Simon D. P. Williams; Riccardo E. M. Riva; David LaVallee; Peter J. Clarke; Edward C. King; Richard C. A. Hindmarsh; Hannu Koivula
Bedrock uplift in Antarctica is dominated by a combination of glacial isostatic adjustment (GIA) and elastic response to contemporary mass change. Here, we present spatially extensive GPS observations of Antarctic bedrock uplift, using 52% more stations than previous studies, giving enhanced coverage, and with improved precision. We observe rapid elastic uplift in the northern Antarctic Peninsula. After considering elastic rebound, the GPS data suggests that modeled or empirical GIA uplift signals are often over?estimated, par t icularly the magnitudes of the signal maxima. Our observation that GIA uplift is misrepresented by modeling (weighted root?meansquares of observation?model differences: 4.9–5.0 mm/yr) suggests that, apart from a few regions where large ice mass loss is occurring, the spatial pattern of secular ice mass change derived from Gravity Recovery and Climate Experiment (GRACE) data and GIA models may be unreliable, and that several recent secular Antarctic ice mass loss estimates are systematically biased, mainly too high.
Geophysical Research Letters | 2012
Matt A. King; Maxim Keshin; Pippa L. Whitehouse; Ian D. Thomas; Glenn A. Milne; Riccardo E. M. Riva
The only vertical land movement signal routinely corrected for when estimating absolute sea-level change from tide gauge data is that due to glacial isostatic adjustment (GIA). We compare modeled GIA uplift (ICE-5G + VM2) with vertical land movement at ?300 GPS stations located near to a global set of tide gauges, and find regionally coherent differences of commonly ±0.5–2 mm/yr. Reference frame differences and signal due to present-day mass trends cannot reconcile these differences. We examine sensitivity to the GIA Earth model by fitting to a subset of the GPS velocities and find substantial regional sensitivity, but no single Earth model is able to reduce the disagreement in all regions. We suggest errors in ice history and neglected lateral Earth structure dominate model-data differences, and urge caution in the use of modeled GIA uplift alone when interpreting regional- and global- scale absolute (geocentric) sea level from tide gauge data.
Geophysical Research Letters | 2006
Pippa L. Whitehouse; Konstantin Latychev; Glenn A. Milne; Jerry X. Mitrovica; Roblyn A. Kendall
[1] The importance of including lateral Earth structure in the analysis of Fennoscandian glacial isostatic adjustment (GIA) is investigated using a finite volume numerical formulation. Comparing output from radially-varying 1-D Earth models and models which account for the presence of plate boundaries, lateral variations in lithospheric thickness and viscosity heterogeneities in the upper and lower mantle, we find that perturbations to present-day rates of surface deformation due to the inclusion of 3-D Earth structure significantly exceed current observational uncertainties. Predicted residuals between 1-D and 3-D Earth models may be improved with the use of a 1-D model which approximates the local depth-dependent mean of the 3-D model. However, the remaining misfit is still large enough to significantlybiasinferencesofEarthstructureandicehistory. Weconcludethatlateralvariationsatbothglobalandregional scales must be accounted for when interpreting GPS observations from Fennoscandia. Citation: Whitehouse, P., K. Latychev, G. A. Milne, J. X. Mitrovica, and R. Kendall (2006), Impact of 3-D Earth structure on Fennoscandian glacial isostatic adjustment: Implications for space-geodetic estimates of presentday crustal deformations, Geophys. Res. Lett., 33, L13502,
Geology | 2007
Pippa L. Whitehouse; Mark B. Allen; Glenn A. Milne
The geomorphology of the western Siberian Arctic coast represents a significant departure from the global trend of Holocene delta formation by major rivers. The Ob9 and Yenisei Rivers in western Siberia drain into the Arctic Ocean via estuaries ∼900 and ∼500 km long, respectively. Eastern Siberian rivers such as the Lena, Indigirka, and Kolyma terminate at significant marine deltas. We show that this spatial variation in coastal geomorphology can be explained by the glacial isostatic adjustment of the region. The development and collapse of a peripheral bulge in western Siberia, associated with the glaciation and subsequent deglaciation of the Eurasian ice sheets, led to a distinct spatial variation in sea-level change that continues to this day. In particular, since the marked decrease in global-scale ice melting ca. 7 ka, our model predicts a sea-level rise at the mouth of the Ob9 River of ∼14 m, compared to a rise of ∼6 m at the mouth of the Lena River, which ceased at 3 ka. We propose that the enhanced sea-level rise in the western Siberian Arctic associated with peripheral bulge subsidence has prevented the establishment of marine deltas at the mouths of the Ob9 and Yenisei Rivers. We conclude that regional variations in relative sea-level change driven by glacial isostatic adjustment should be considered when interpreting large-scale coastal morphology and deltaic stratigraphy, which is normally assumed to correlate with eustatic fluctuations.
Journal of Geophysical Research | 2017
Pippa L. Whitehouse; Michael J. Bentley; Andreas Vieli; Stewart S. R. Jamieson; Andrew S. Hein; David E. Sugden
The Weddell Sea sector of the Antarctic Ice Sheet is hypothesized to have made a significant contribution to sea-level rise since the Last Glacial Maximum. Using a numerical flowline model we investigate the controls on grounding line motion across the eastern Weddell Sea and compare our results with field data relating to past ice extent. Specifically, we investigate the influence of changes in ice temperature, accumulation, sea level, ice shelf basal melt, and ice shelf buttressing on the dynamics of the Foundation Ice Stream. We find that ice shelf basal melt plays an important role in controlling grounding line advance, while a reduction in ice shelf buttressing is found to be necessary for grounding line retreat. There are two stable positions for the grounding line under glacial conditions: at the northern margin of Berner Island and at the continental shelf break. Global mean sea-level contributions associated with these two scenarios are ~50mm and ~130 mm, respectively. Comparing model results with field evidence from the Pensacola Mountains and the Shackleton Range, we find it unlikely that ice was grounded at the continental shelf break for a prolonged period during the last glacial cycle. However, we cannot rule out a brief advance to this position or a scenario in which the grounding line retreated behind present during deglaciation and has since re-advanced. Better constraints on past ice sheet and ice shelf geometry, ocean temperature, and ocean circulation are needed to reconstruct more robustly past behavior of the Foundation Ice Stream.
Nature | 2018
Jonathan Kingslake; Reed P. Scherer; T. Albrecht; J. Coenen; Ross D. Powell; R. Reese; N. D. Stansell; S. Tulaczyk; M. G. Wearing; Pippa L. Whitehouse
To predict the future contributions of the Antarctic ice sheets to sea-level rise, numerical models use reconstructions of past ice-sheet retreat after the Last Glacial Maximum to tune model parameters1. Reconstructions of the West Antarctic Ice Sheet have assumed that it retreated progressively throughout the Holocene epoch (the past 11,500 years or so)2–4. Here we show, however, that over this period the grounding line of the West Antarctic Ice Sheet (which marks the point at which it is no longer in contact with the ground and becomes a floating ice shelf) retreated several hundred kilometres inland of today’s grounding line, before isostatic rebound caused it to re-advance to its present position. Our evidence includes, first, radiocarbon dating of sediment cores recovered from beneath the ice streams of the Ross Sea sector, indicating widespread Holocene marine exposure; and second, ice-penetrating radar observations of englacial structure in the Weddell Sea sector, indicating ice-shelf grounding. We explore the implications of these findings with an ice-sheet model. Modelled re-advance of the grounding line in the Holocene requires ice-shelf grounding caused by isostatic rebound. Our findings overturn the assumption of progressive retreat of the grounding line during the Holocene in West Antarctica, and corroborate previous suggestions of ice-sheet re-advance5. Rebound-driven stabilizing processes were apparently able to halt and reverse climate-initiated ice loss. Whether these processes can reverse present-day ice loss6 on millennial timescales will depend on bedrock topography and mantle viscosity—parameters that are difficult to measure and to incorporate into ice-sheet models.Radiocarbon dating of sediment cores and ice-penetrating radar observations are used to demonstrate that the West Antarctic Ice Sheet has not retreated progressively during the Holocene epoch, but has instead showed periods of retreat and re-advance.
Nature Geoscience | 2018
Natasha L.M. Barlow; Erin L. McClymont; Pippa L. Whitehouse; Chris R. Stokes; Stewart S. R. Jamieson; Sarah A. Woodroffe; Michael J. Bentley; S. Louise Callard; Colm Ó Cofaigh; David J.A. Evans; Jennifer R. Horrocks; Jerry M. Lloyd; Antony J. Long; Martin Margold; David H. Roberts; Maria L. Sanchez-Montes
During the Last Interglacial, global mean sea level reached approximately 6 to 9 m above the present level. This period of high sea level may have been punctuated by a fall of more than 4 m, but a cause for such a widespread sea-level fall has been elusive. Reconstructions of global mean sea level account for solid Earth processes and so the rapid growth and decay of ice sheets is the most obvious explanation for the sea-level fluctuation. Here, we synthesize published geomorphological and stratigraphic indicators from the Last Interglacial, and find no evidence for ice-sheet regrowth within the warm interglacial climate. We also identify uncertainties in the interpretation of local relative sea-level data that underpin the reconstructions of global mean sea level. Given this uncertainty, and taking into account our inability to identify any plausible processes that would cause global sea level to fall by 4 m during warm climate conditions, we question the occurrence of a rapid sea-level fluctuation within the Last Interglacial. We therefore recommend caution in interpreting the high rates of global mean sea-level rise in excess of 3 to 7 m per 1,000 years that have been proposed for the period following the Last Interglacial sea-level lowstand.Robust evidence for a previously proposed sea-level fall and rise during the Last Interglacial is lacking, according to a synthesis. This calls estimates of high rates of sea-level rise at the end of the Last Interglacial into question.