Pippa Thomson
Western General Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pippa Thomson.
Nature Neuroscience | 2006
Jeremy Hall; Heather C. Whalley; Dominic Job; Ben J. Baig; Andrew M. McIntosh; Kathryn L. Evans; Pippa Thomson; David J. Porteous; David G. Cunningham-Owens; Eve C. Johnstone; Stephen M. Lawrie
NRG1, encoding neuregulin 1, is a susceptibility gene for schizophrenia, but no functional mutation causally related to the disorder has yet been identified. Here we investigate the effects of a variant in the human NRG1 promoter region in subjects at high risk of schizophrenia. We show that this variant is associated with (i) decreased activation of frontal and temporal lobe regions, (ii) increased development of psychotic symptoms and (iii) decreased premorbid IQ.
Molecular Psychiatry | 2009
William Hennah; Pippa Thomson; Andrew McQuillin; Nick Bass; Anu Loukola; Adebayo Anjorin; Douglas Blackwood; David Curtis; Ian J. Deary; Sarah E. Harris; Erkki Isometsä; Jacob Lawrence; Jan-Erik Lönnqvist; Walter J. Muir; Aarno Palotie; Timo Partonen; Tiina Paunio; E Pylkkö; Michelle Robinson; P Soronen; Kirsi Suominen; Jaana Suvisaari; Srinivasa Thirumalai; D. St Clair; Hugh Gurling; Leena Peltonen; David J. Porteous
Disrupted in schizophrenia 1 (DISC1) has been associated with risk of schizophrenia, schizoaffective disorder, bipolar disorder, major depression, autism and Asperger syndrome, but apart from in the original translocation family, true causal variants have yet to be confirmed. Here we report a harmonized association study for DISC1 in European cohorts of schizophrenia and bipolar disorder. We identify regions of significant association, demonstrate allele frequency heterogeneity and provide preliminary evidence for modifying interplay between variants. Whereas no associations survived permutation analysis in the combined data set, significant corrected associations were observed for bipolar disorder at rs1538979 in the Finnish cohorts (uncorrected P=0.00020; corrected P=0.016; odds ratio=2.73±95% confidence interval (CI) 1.42–5.27) and at rs821577 in the London cohort (uncorrected P=0.00070; corrected P=0.040; odds ratio=1.64±95% CI 1.23–2.19). The rs821577 single nucleotide polymorphism (SNP) showed evidence for increased risk within the combined European cohorts (odds ratio=1.27±95% CI 1.07–1.51), even though significant corrected association was not detected (uncorrected P=0.0058; corrected P=0.28). After conditioning the European data set on the two risk alleles, reanalysis revealed a third significant SNP association (uncorrected P=0.00050; corrected P=0.025). This SNP showed evidence for interplay, either increasing or decreasing risk, dependent upon the presence or absence of rs1538979 or rs821577. These findings provide further support for the role of DISC1 in psychiatric illness and demonstrate the presence of locus heterogeneity, with the effect that clinically relevant genetic variants may go undetected by standard analysis of combined cohorts.
Molecular Psychiatry | 2007
Pippa Thomson; Andrea Christoforou; Stewart W. Morris; E. Adie; Benjamin S. Pickard; David J. Porteous; Walter J. Muir; Douglas Blackwood; Kathryn L. Evans
Neuregulin 1 (NRG1) is a strong candidate for involvement in the aetiology of schizophrenia. A haplotype, initially identified as showing association in the Icelandic and Scottish populations, has shown a consistent effect size in multiple European populations. Additionally, NRG1 has been implicated in susceptibility to bipolar disorder. In this first study to select markers systematically on the basis of linkage disequilibrium across the entire NRG1 gene, we used haplotype-tagging single-nucleotide polymorphisms to identify single markers and haplotypes associated with schizophrenia and bipolar disorder in an independently ascertained Scottish population. Haplotypes in two regions met an experiment-wide significance threshold of P=0.0016 (Nyholts SpD) and were permuted to correct for multiple testing. Region A overlaps with the Icelandic haplotype and shows nominal association with schizophrenia (P=0.00032), bipolar disorder (P=0.0011), and the combined case group (P=0.0017). This region includes the 5′ exon of the NRG1 GGF2 isoform and overlaps the expressed sequence tag (EST) cluster Hs.97362. However, no haplotype in Region A remains significant after permutation analysis (P>0.05). Region B contains a haplotype associated with both schizophrenia (P=0.00014), and the combined case group (P=0.000062), although it does not meet Nyholts threshold in bipolar disorder alone (P=0.0022). This haplotype remained significant after permutation analysis in both the schizophrenia and combined case groups (P=0.024 and P=0.016, respectively). It spans a ∼136u2009kb region that includes the coding sequence of the sensory and motor neuron derived factor (SMDF) isoform and 3′ exons of all other known NRG1 isoforms. Our study identifies a new of NRG1 region involved in schizophrenia and bipolar disorder in the Scottish population.
Neuroscience Letters | 2005
Pippa Thomson; Sarah E. Harris; Lawrence J. Whalley; David J. Porteous; Ian J. Deary
DISC1 is expressed in the hippocampus and has been identified as a possible genetic risk factor for both schizophrenia and bipolar disorder. These psychiatric illnesses are associated with impaired learning and memory. This study investigates the association of variation in DISC1 with cognitive function on the same general mental ability test (Moray House Test) at age 11 and age 79, and cognitive change between ages 11 and 79, in 425 people from the Lothian Birth Cohort 1921 (LBC1921). Tests of memory, non-verbal reasoning and executive function were also administered at age 79. The effect of genotype at a non-synonymous single nucleotide polymorphism in exon 11, rs821616, was studied. There was no direct effect of DISC1 genotype on any cognitive measure. However, there was a significant DISC1 genotype by sex interaction on Moray House Test scores at age 79, both before and after adjustment for cognitive ability at age 11 (p = 0.034 and 0.043, respectively). Women homozygous for the Cys allele had significantly lower cognitive ability scores than men at age 79, p = 0.003. Variation in DISC1 may therefore affect cognitive aging especially in women.
Molecular Psychiatry | 2005
Pippa Thomson; Naomi R. Wray; A. M. Thomson; D. R. Dunbar; M. A. Grassie; A. Condie; M. Walker; Daniel J. Smith; D. J. Pulford; Walter J. Muir; Douglas Blackwood; David J. Porteous
GPR50 is an orphan G protein-coupled receptor (GPCR) located on Xq28, a region previously implicated in multiple genetic studies of bipolar affective disorder (BPAD). Allele frequencies of three polymorphisms in GPR50 were compared in case–control studies between subjects with BPAD (264), major depressive disorder (MDD) (226), or schizophrenia (SCZ) (263) and ethnically matched controls (562). Significant associations were found between an insertion/deletion polymorphism in exon 2 and both BPAD (P=0.0070), and MDD (P=0.011) with increased risk associated with the deletion variant (GPR50Δ502–505). When the analysis was restricted to female subjects, the associations with BPAD and MDD increased in significance (P=0.00023 and P=0.0064, respectively). Two other single-nucleotide polymorphisms (SNPs) tested within this gene showed associations between: the female MDD group and an SNP in exon 2 (P=0.0096); and female SCZ and an intronic SNP (P=0.0014). No association was detected in males with either MDD, BPAD or SCZ. These results suggest that GPR50Δ502–505, or a variant in tight linkage disequilibrium with this polymorphism, is a sex-specific risk factor for susceptibility to bipolar disorder, and that other variants in the gene may be sex-specific risk factors in the development of schizophrenia.
Molecular Psychiatry | 2009
Benjamin S. Pickard; Andrea Christoforou; Pippa Thomson; A. Fawkes; Kathryn L. Evans; Stewart W. Morris; David J. Porteous; Douglas Blackwood; Walter J. Muir
The neuronal PAS domain 3 (NPAS3) gene encodes a neuronal transcription factor that is implicated in psychiatric disorders by the identification of a human chromosomal translocation associated with schizophrenia and a mouse knockout model with behavioural and hippocampal neurogenesis defects. To determine its contribution to the risk of psychiatric illness in the general population, we genotyped 70 single-nucleotide polymorphisms across the NPAS3 gene in 368 individuals with bipolar disorder, 386 individuals with schizophrenia and 455 controls. Modestly significant single-marker and global and individual haplotypes were identified in four discrete regions of the gene. The presence of both risk and protective haplotypes at each of these four regions indicated locus and allelic heterogeneity within NPAS3 and suggested a model whereby interactions between variants across the gene might contribute to susceptibility to illness. This was supported by predicting the most likely haplotype for each individual at each associated region and then calculating an NPAS3-mediated ‘net genetic load’ value. This value differed significantly from controls for both bipolar disorder (P=0.0000010) and schizophrenia (P=0.0000012). Logistic regression analysis also confirmed the combinatorial action of the four associated regions on disease risk. In addition, sensitivity/specificity plots showed that the extremes of the genetic loading distribution possess the greatest predictive power—a feature suggesting multiplicative allele interaction. These data add to recent evidence that the combinatorial analysis of a number of relatively small effect size haplotypes may have significant power to predict an individuals risk of a complex genetic disorder such as psychiatric illness.
Schizophrenia Bulletin | 2011
Mandy Johnstone; Pippa Thomson; Jeremy Hall; Andrew M. McIntosh; Stephen M. Lawrie; David J. Porteous
Schizophrenia and related disorders have a major genetic component. Several large-scale studies have uncovered a number of possible candidate genes, but these have yet to be consistently replicated and their underlying biological function remains elusive. One exception is Disrupted in schizophrenia 1 (DISC1), a gene locus originally identified in a large Scottish family, showing a heavy burden of major mental illnesses associated with a balanced t(1;11)(q42.1;q14.3) chromosome translocation. Substantial genetic and biological research on DISC1 has been reported in the intervening 10 years: DISC1 is now recognized as a genetic risk factor for a spectrum of psychiatric disorders and DISC1 impacts on many aspects of central nervous system (CNS) function, including neurodevelopment, neurosignaling, and synaptic functioning. Evidence has emerged from genetic studies showing a relationship between DISC1 and quantitative traits, including working memory, cognitive aging, gray matter volume in the prefrontal cortex, and abnormalities in hippocampal structures and function. DISC1 interacts with numerous proteins also involved in neuronal migration, neurite outgrowth, cytoskeletal modulation, and signal transduction, some of which have been reported as independent genetic susceptibility factors for psychiatric morbidity. Here, we focus on the growing literature relating genetic variation in the DISC1 pathway to functional and structural studies of the brain in humans and in the mouse.
The Journal of Neuroscience | 2011
Nicholas J. Bradshaw; Dinesh C. Soares; Becky C. Carlyle; Fumiaki Ogawa; Hazel Davidson-Smith; Sheila Christie; Shaun Mackie; Pippa Thomson; David J. Porteous; J. Kirsty Millar
Nuclear distribution factor E-homolog 1 (NDE1), Lissencephaly 1 (LIS1), and NDE-like 1 (NDEL1) together participate in essential neurodevelopmental processes, including neuronal precursor proliferation and differentiation, neuronal migration, and neurite outgrowth. NDE1/LIS1/NDEL1 interacts with Disrupted in Schizophrenia 1 (DISC1) and the cAMP-hydrolyzing enzyme phosphodiesterase 4 (PDE4). DISC1, PDE4, NDE1, and NDEL1 have each been implicated as genetic risk factors for major mental illness. Here, we demonstrate that DISC1 and PDE4 modulate NDE1 phosphorylation by cAMP-dependent protein kinase A (PKA) and identify a novel PKA substrate site on NDE1 at threonine-131 (T131). Homology modeling predicts that phosphorylation at T131 modulates NDE1–LIS1 and NDE1–NDEL1 interactions, which we confirm experimentally. DISC1–PDE4 interaction thus modulates organization of the NDE1/NDEL1/LIS1 complex. T131-phosphorylated NDE1 is present at the postsynaptic density, in proximal axons, within the nucleus, and at the centrosome where it becomes substantially enriched during mitosis. Mutation of the NDE1 T131 site to mimic PKA phosphorylation inhibits neurite outgrowth. Thus PKA-dependent phosphorylation of the NDE1/LIS1/NDEL1 complex is DISC1–PDE4 modulated and likely to regulate its neural functions.
Molecular Psychiatry | 2014
Pippa Thomson; Jennifer Parla; Allan F. McRae; Melissa Kramer; K Ramakrishnan; Jianchao Yao; Dinesh C. Soares; Shane McCarthy; Stewart W. Morris; L Cardone; S Cass; Elena Ghiban; William Hennah; Kathryn L. Evans; D Rebolini; J. K. Millar; Sarah E. Harris; John M. Starr; Donald J. MacIntyre; Andrew M. McIntosh; James D. Watson; Ian J. Deary; Peter M. Visscher; D. H. R. Blackwood; W R McCombie; David J. Porteous
A balanced t(1;11) translocation that transects the Disrupted in schizophrenia 1 (DISC1) gene shows genome-wide significant linkage for schizophrenia and recurrent major depressive disorder (rMDD) in a single large Scottish family, but genome-wide and exome sequencing-based association studies have not supported a role for DISC1 in psychiatric illness. To explore DISC1 in more detail, we sequenced 528u2009kb of the DISC1 locus in 653 cases and 889 controls. We report 2718 validated single-nucleotide polymorphisms (SNPs) of which 2010 have a minor allele frequency of <1%. Only 38% of these variants are reported in the 1000 Genomes Project European subset. This suggests that many DISC1 SNPs remain undiscovered and are essentially private. Rare coding variants identified exclusively in patients were found in likely functional protein domains. Significant region-wide association was observed between rs16856199 and rMDD (P=0.026, unadjusted P=6.3 × 10−5, OR=3.48). This was not replicated in additional recurrent major depression samples (replication P=0.11). Combined analysis of both the original and replication set supported the original association (P=0.0058, OR=1.46). Evidence for segregation of this variant with disease in families was limited to those of rMDD individuals referred from primary care. Burden analysis for coding and non-coding variants gave nominal associations with diagnosis and measures of mood and cognition. Together, these observations are likely to generalise to other candidate genes for major mental illness and may thus provide guidelines for the design of future studies.
Neuroscience Letters | 2010
Rosie M. Walker; Andrea Christoforou; Pippa Thomson; Kevin A. McGhee; Alan Maclean; Thomas W. Mühleisen; Jana Strohmaier; Vanessa Nieratschker; Markus M. Nöthen; Marcella Rietschel; Sven Cichon; Stewart W. Morris; Omer Jilani; David StClair; Douglas Blackwood; Walter J. Muir; David J. Porteous; Kathryn L. Evans
Schizophrenia (SCZ) and bipolar disorder (BPD) are severe heritable psychiatric disorders involving a complex genetic aetiology. Neuregulin 1 (NRG1) is a leading candidate gene for SCZ, and has recently been implicated in BPD. We previously reported association of two NRG1 haplotypes with SCZ and BPD in a Scottish case-control sample. One haplotype is located at the 5 end of the gene (region A), and the other is located at the 3 end (region B). Here, association to haplotypes within regions A and B was assessed in patients with SCZ and BPD in a second Scottish case-control sample and in the two Scottish samples combined. Association to region B was also assessed in patients with SCZ and BPD in a German case-control sample, and in all three samples combined. No evidence was found for association in the new samples when analysed individually; however, in the joint analysis of the two Scottish samples, a region B haplotype comprising two SNPs (rs6988339 and rs3757930) was associated with SCZ and the combined case group (SCZ: p=0.0037, OR=1.3, 95% CI: 1.1-1.6; BPD+SCZ: p=0.0080, OR=1.2, 95% CI: 1.1-1.5), with these associations withstanding multiple testing correction at the single-test level (SCZ: p(st)=0.022; BPD+SCZ: p(st)=0.044). This study supports the involvement of NRG1 variants in the less well studied 3 region in conferring susceptibility to SCZ and BPD in the Scottish population.