Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pirjo Isohanni is active.

Publication


Featured researches published by Pirjo Isohanni.


Lancet Neurology | 2011

FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study

Anu Suomalainen; Jenni M. Elo; Kirsi H. Pietiläinen; Anna H. Hakonen; Ksenia Sevastianova; Mari Korpela; Pirjo Isohanni; Sanna Marjavaara; Tiina Tyni; Sari Kiuru-Enari; Helena Pihko; Niklas Darin; Katrin Õunap; L.A.J. Kluijtmans; Anders Paetau; Jana Buzkova; Laurence A. Bindoff; Johanna Annunen-Rasila; Johanna Uusimaa; Aila Rissanen; Hannele Yki-Järvinen; Michio Hirano; Mar Tulinius; Jan A.M. Smeitink; Henna Tyynismaa

BACKGROUND Muscle biopsy is the gold standard for diagnosis of mitochondrial disorders because of the lack of sensitive biomarkers in serum. Fibroblast growth factor 21 (FGF-21) is a growth factor with regulatory roles in lipid metabolism and the starvation response, and concentrations are raised in skeletal muscle and serum in mice with mitochondrial respiratory chain deficiencies. We investigated in a retrospective diagnostic study whether FGF-21 could be a biomarker for human mitochondrial disorders. METHODS We assessed samples from adults and children with mitochondrial disorders or non-mitochondrial neurological disorders (disease controls) from seven study centres in Europe and the USA, and recruited healthy volunteers (healthy controls), matched for age where possible, from the same centres. We used ELISA to measure FGF-21 concentrations in serum or plasma samples (abnormal values were defined as >200 pg/mL). We compared these concentrations with values for lactate, pyruvate, lactate-to-pyruvate ratio, and creatine kinase in serum or plasma and calculated sensitivity, specificity, and positive and negative predictive values for all biomarkers. FINDINGS We analysed serum or plasma from 67 patients (41 adults and 26 children) with mitochondrial disorders, 34 disease controls (22 adults and 12 children), and 74 healthy controls. Mean FGF-21 concentrations in serum were 820 (SD 1151) pg/mL in adult and 1983 (1550) pg/mL in child patients with respiratory chain deficiencies and 76 (58) pg/mL in healthy controls. FGF-21 concentrations were high in patients with mitochondrial disorders affecting skeletal muscle but not in disease controls, including those with dystrophies. In patients with abnormal FGF-21 concentrations in serum, the odds ratio of having a muscle-manifesting mitochondrial disease was 132·0 (95% CI 38·7-450·3). For the identification of muscle-manifesting mitochondrial disease, the sensitivity was 92·3% (95% CI 81·5-97·9%) and specificity was 91·7% (84·8-96·1%). The positive and negative predictive values for FGF-21 were 84·2% (95% CI 72·1-92·5%) and 96·1 (90·4-98·9%). The accuracy of FGF-21 to correctly identify muscle-manifesting respiratory chain disorders was better than that for all conventional biomarkers. The area under the receiver-operating-characteristic curve for FGF-21 was 0·95; by comparison, the values for other biomarkers were 0·83 lactate (p=0·037, 0·83 for pyruvate (p=0·015), 0·72 for the lactate-to-pyruvate ratio (p=0·0002), and 0·77 for creatine kinase (p=0·013). INTERPRETATION Measurement of FGF-21 concentrations in serum identified primary muscle-manifesting respiratory chain deficiencies in adults and children and might be feasible as a first-line diagnostic test for these disorders to reduce the need for muscle biopsy. FUNDING Sigrid Jusélius Foundation, Jane and Aatos Erkko Foundation, Molecular Medicine Institute of Finland, University of Helsinki, Helsinki University Central Hospital, Academy of Finland, Novo Nordisk, Arvo and Lea Ylppö Foundation.


Neuromuscular Disorders | 2010

Mitochondrial DNA depletion syndromes--many genes, common mechanisms.

Anu Suomalainen; Pirjo Isohanni

Mitochondrial DNA depletion syndrome has become an important cause of inherited metabolic disorders, especially in children, but also in adults. The manifestations vary from tissue-specific mtDNA depletion to wide-spread multisystemic disorders. Nine genes are known to underlie this group of disorders, and many disease genes are still unidentified. However, the disease mechanisms seem to be intimately associated with mtDNA replication and nucleotide pool regulation. We review here the current knowledge on the clinical and molecular genetic features of mitochondrial DNA depletion syndrome.


Brain | 2008

Thymidine kinase 2 defects can cause multi-tissue mtDNA depletion syndrome

Alexandra Götz; Pirjo Isohanni; Helena Pihko; Anders Paetau; Riitta Herva; Outi Saarenpää-Heikkilä; Leena Valanne; Sanna Marjavaara; Anu Suomalainen

Mitochondrial DNA depletion syndrome (MDS) is a severe recessively inherited disease of childhood. It manifests most often in infancy, is rapidly progressive and leads to early death. MDS is caused by an increasing number of nuclear genes leading to multisystemic or tissue-specific decrease in mitochondrial DNA (mtDNA) copy number. Thymidine kinase 2 (TK2) has been reported to cause a myopathic form of MDS. We report here the clinical, autopsy and molecular genetic findings of rapidly progressive fatal infantile mitochondrial syndrome. All of our seven patients had rapidly progressive myopathy/encephalomyopathy, leading to respiratory failure within the first 3 years of life, with high creatine kinase values and dystrophic changes in the muscle with cytochrome c oxidase-negative fibres. In addition, two patients also had terminal-phase seizures, one had epilepsia partialis continua and one had cortical laminar necrosis. We identified two different homozygous or compound heterozygous mutations in the TK2 gene in all the patients: c.739 C s -> T and c.898 C -> T, leading to p.R172W and p.R225W changes at conserved protein sites. R172W mutation led to myopathy or encephalomyopathy with the onset during the first months of life, and was associated with severe mtDNA depletion in the muscle, brain and liver. Homozygosity for R225W mutation manifested during the second year of life as a myopathy, and showed muscle-specific mtDNA depletion. Both mutations originated from single ancient founders, with Finnish origin and enrichment for the new R172W mutation, and possibly Scandinavian ancestral origin for the R225W. We conclude that TK2 mutations may manifest as infantile-onset fatal myopathy with dystrophic features, but should be considered also in infantile progressive encephalomyopathy with wide-spread mtDNA depletion.


Human Molecular Genetics | 2012

Thymidine kinase 2 mutations in autosomal recessive progressive external ophthalmoplegia with multiple mitochondrial DNA deletions

Henna Tyynismaa; Ren Sun; Sofia Ahola-Erkkilä; Henrikki Almusa; Rosanna Pöyhönen; Mari Korpela; Jari Honkaniemi; Pirjo Isohanni; Anders Paetau; Liya Wang; Anu Suomalainen

Autosomal-inherited progressive external ophthalmoplegia (PEO) is an adult-onset disease characterized by the accumulation of multiple mitochondrial DNA (mtDNA) deletions in post-mitotic tissues. Mutations in six different genes have been described to cause the autosomal dominant form of the disease, but only mutations in the DNA polymerase gamma gene are known to cause autosomal recessive PEO (arPEO), leaving the genetic background of arPEO mostly unknown. Here we used whole-exome sequencing and identified compound heterozygous mutations, leading to two amino acid alterations R225W and a novel T230A in thymidine kinase 2 (TK2) in arPEO patients. TK2 is an enzyme of the mitochondrial nucleotide salvage pathway and its loss-of-function mutations have previously been shown to underlie the early-infantile myopathic form of mtDNA depletion syndrome (MDS). Our TK2 activity measurements of patient fibroblasts and mutant recombinant proteins show that the combination of the identified arPEO variants, R225W and T230A, leads to a significant reduction in TK2 activity, consistent with the late-onset phenotype, whereas homozygosity for R225W, previously associated with MDS, leads to near-total loss of activity. Our finding identifies a new genetic cause of arPEO with multiple mtDNA deletions. Furthermore, MDS and multiple mtDNA deletion disorders are manifestations of the same pathogenic pathways affecting mtDNA replication and repair, indicating that MDS-associated genes should be studied when searching for genetic background of PEO disorders.


Journal of Medical Genetics | 2013

Whole-exome sequencing identifies a mutation in the mitochondrial ribosome protein MRPL44 to underlie mitochondrial infantile cardiomyopathy

Christopher J. Carroll; Pirjo Isohanni; Rosanna Pöyhönen; Liliya Euro; Uwe Richter; Virginia Brilhante; Alexandra Götz; Taina Lahtinen; Anders Paetau; Helena Pihko; Brendan J. Battersby; Henna Tyynismaa; Anu Suomalainen

Background The genetic complexity of infantile cardiomyopathies is remarkable, and the importance of mitochondrial translation defects as a causative factor is only starting to be recognised. We investigated the genetic basis for infantile onset recessive hypertrophic cardiomyopathy in two siblings. Methods and results Analysis of respiratory chain enzymes revealed a combined deficiency of complexes I and IV in the heart and skeletal muscle. Exome sequencing uncovered a homozygous mutation (L156R) in MRPL44 of both siblings. MRPL44 encodes a protein in the large subunit of the mitochondrial ribosome and is suggested to locate in close proximity to the tunnel exit of the yeast mitochondrial ribosome. We found severely reduced MRPL44 levels in the patients heart, skeletal muscle and fibroblasts suggesting that the missense mutation affected the protein stability. In patient fibroblasts, decreased MRPL44 affected assembly of the large ribosomal subunit and stability of 16S rRNA leading to complex IV deficiency. Despite this assembly defect, de novo mitochondrial translation was only mildly affected in fibroblasts suggesting that MRPL44 may have a function in the assembly/stability of nascent mitochondrial polypeptides exiting the ribosome. Retroviral expression of wild-type MRPL44 in patient fibroblasts rescued the large ribosome assembly defect and COX deficiency. Conclusions These findings indicate that mitochondrial ribosomal subunit defects can generate tissue-specific manifestations, such as cardiomyopathy.


Journal of Medical Genetics | 2010

DARS2 mutations in mitochondrial leucoencephalopathy and multiple sclerosis

Pirjo Isohanni; Tarja Linnankivi; Jana Buzkova; T Lönnqvist; Helena Pihko; Leena Valanne; Pentti J. Tienari; Irina Elovaara; T Pirttilä; Mauri Reunanen; K Koivisto; Sanna Marjavaara; Anu Suomalainen

Background Leucoencephalopathy with brain stem and spinal cord involvement and high brain lactate (LBSL) was first defined by characteristic magnetic resonance imaging and spectroscopic findings. The clinical features include childhood or juvenile onset slowly progressive ataxia, spasticity, and dorsal column dysfunction, occasionally accompanied by learning difficulties. Mutations in DARS2, encoding mitochondrial aspartyl-tRNA synthetase, were recently shown to cause LBSL. The signs and symptoms show some overlap with the most common leucoencephalopathy of young adults, multiple sclerosis (MS). Objective To clarify the molecular background of LBSL patients in Finland, and to look for DARS2 mutations in a group of MS patients. Methods Clinical evaluation of LBSL patients, DARS2 sequencing and haplotype analysis, and carrier frequency determination in Finland. Results All eight LBSL patients were compound heterozygotes for DARS2 mutations: all carried R76SfsX5 change, seven had M134_K165del, and one had C152F change. Axonal neuropathy was found in five of the eight patients. The carrier frequencies of the R76SfsX5 and M134_K165del mutations were 1:95 and 1:380, respectively. All patients shared common European haplotypes, suggestive of common European LBSL ancestors. No enrichment of the two common DARS2 mutations was found in 321 MS patients. Conclusion All LBSL patients were compound heterozygotes, which suggests that DARS2 mutation homozygosity may be lethal or manifest as a different phenotype. The authors show here that despite identical mutations the clinical picture was quite variable in the patients. Axonal neuropathy was an important feature of LBSL. DARS2 mutations cause childhood-to-adolescence onset leucoencephalopathy, but they do not seem to be associated with MS.


Neurology | 2011

POLG1 manifestations in childhood

Pirjo Isohanni; Anna H. Hakonen; Liliya Euro; I. Paetau; T. Linnankivi; E. Liukkonen; T. Wallden; L. Luostarinen; Leena Valanne; Anders Paetau; Johanna Uusimaa; Tuula Lönnqvist; Anu Suomalainen; Helena Pihko

Objective: Mitochondrial DNA polymerase γ (POLG1) mutations in children often manifest as Alpers syndrome, whereas in adults, a common manifestation is mitochondrial recessive ataxia syndrome (MIRAS) with severe epilepsy. Because some patients with MIRAS have presented with ataxia or epilepsy already in childhood, we searched for POLG1 mutations in neurologic manifestations in childhood. Methods: We investigated POLG1 in 136 children, all clinically suspected to have mitochondrial disease, with one or more of the following: ataxia, axonal neuropathy, severe epilepsy without known epilepsy syndrome, epileptic encephalopathy, encephalohepatopathy, or neuropathologically verified Alpers syndrome. Results: Seven patients had POLG1 mutations, and all of them had severe encephalopathy with intractable epilepsy. Four patients had died after exposure to sodium valproate. Brain MRI showed parieto-occipital or thalamic hyperintense lesions, white matter abnormality, and atrophy. Muscle histology and mitochondrial biochemistry results were normal in all. Conclusions: POLG1 analysis should belong to the first-line DNA diagnostic tests for children with an encephalitis-like presentation evolving into epileptic encephalopathy with liver involvement (Alpers syndrome), even if brain MRI and morphology, respiratory chain activities, and the amount of mitochondrial DNA in the skeletal muscle are normal. POLG1 analysis should precede valproate therapy in pediatric patients with a typical phenotype. However, POLG1 is not a common cause of isolated epilepsy or ataxia in childhood.


American Journal of Human Genetics | 2016

Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number

Kyle Thompson; Homa Majd; Christina Dallabona; Karit Reinson; Martin S. King; Charlotte L. Alston; Langping He; Tiziana Lodi; Simon A. Jones; Aviva Fattal-Valevski; Nitay D. Fraenkel; Ann Saada; Alon Haham; Pirjo Isohanni; Roshni Vara; Ines A. Barbosa; Michael A. Simpson; Charu Deshpande; Sanna Puusepp; Penelope E. Bonnen; Richard J. Rodenburg; Anu Suomalainen; Katrin Õunap; Orly Elpeleg; Ileana Ferrero; Robert McFarland; Edmund R. S. Kunji; Robert W. Taylor

Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.


Neurology | 2016

FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders

Jenni M. Lehtonen; Saara Forsström; Emanuela Bottani; Carlo Viscomi; Olivier R. Baris; Helena Isoniemi; Krister Höckerstedt; Pia Österlund; M. Hurme; Juulia Jylhävä; Sirpa Leppä; Ritva Markkula; Tiina Heliö; Giuliana Mombelli; Johanna Uusimaa; Reijo Laaksonen; Hannu Laaksovirta; Mari Auranen; Massimo Zeviani; Jan Smeitink; Rudolf J. Wiesner; Kazuto Nakada; Pirjo Isohanni; Anu Suomalainen

Objective: To validate new mitochondrial myopathy serum biomarkers for diagnostic use. Methods: We analyzed serum FGF21 (S-FGF21) and GDF15 from patients with (1) mitochondrial diseases and (2) nonmitochondrial disorders partially overlapping with mitochondrial disorder phenotypes. We (3) did a meta-analysis of S-FGF21 in mitochondrial disease and (4) analyzed S-Fgf21 and skeletal muscle Fgf21 expression in 6 mouse models with different muscle-manifesting mitochondrial dysfunctions. Results: We report that S-FGF21 consistently increases in primary mitochondrial myopathy, especially in patients with mitochondrial translation defects or mitochondrial DNA (mtDNA) deletions (675 and 347 pg/mL, respectively; controls: 66 pg/mL, p < 0.0001 for both). This is corroborated in mice (mtDNA deletions 1,163 vs 379 pg/mL, p < 0.0001). However, patients and mice with structural respiratory chain subunit or assembly factor defects showed low induction (human 335 pg/mL, p < 0.05; mice 335 pg/mL, not significant). Overall specificities of FGF21 and GDF15 to find patients with mitochondrial myopathy were 89.3% vs 86.4%, and sensitivities 67.3% and 76.0%, respectively. However, GDF15 was increased also in a wide range of nonmitochondrial conditions. Conclusions: S-FGF21 is a specific biomarker for muscle-manifesting defects of mitochondrial translation, including mitochondrial transfer-RNA mutations and primary and secondary mtDNA deletions, the most common causes of mitochondrial disease. However, normal S-FGF21 does not exclude structural respiratory chain complex or assembly factor defects, important to acknowledge in diagnostics. Classification of evidence: This study provides Class III evidence that elevated S-FGF21 accurately distinguishes patients with mitochondrial myopathies from patients with other conditions, and FGF21 and GDF15 mitochondrial myopathy from other myopathies.


Journal of Neuropathology and Experimental Neurology | 2015

Leigh Syndrome: Neuropathology and Pathogenesis

Nicole J. Lake; Matthew J. Bird; Pirjo Isohanni; Anders Paetau

Abstract Leigh syndrome (LS) is the most common pediatric presentation of a defined mitochondrial disease. This progressive encephalopathy is characterized pathologically by the development of bilateral symmetrical lesions in the brainstem and basal ganglia that show gliosis, vacuolation, capillary proliferation, relative neuronal preservation, and by hyperlacticacidemia in the blood and/or cerebrospinal fluid. Understanding the molecular mechanisms underlying this unique pathology has been challenging, particularly in view of the heterogeneous and not yet fully determined genetic basis of LS. Moreover, animal models that mimic features of LS have only been created relatively recently. Here, we review the pathology of LS and consider what might be the molecular mechanisms underlying its pathogenesis. Data from a wide range of sources, including patient samples, animal models, and studies of hypoxic-ischemic encephalopathy (a condition that shares features with LS), were used to provide insight into the pathogenic mechanisms that may drive lesion development. Based on current data, we suggest that severe ATP depletion, gliosis, hyperlacticacidemia, reactive oxygen species, and potentially excitotoxicity cumulatively contribute to the neuropathogenesis of LS. An intimate understanding of the molecular mechanisms causing LS is required to accelerate the development of LS treatments.

Collaboration


Dive into the Pirjo Isohanni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tuula Lönnqvist

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar

Helena Pihko

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liliya Euro

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge