Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pirjo Käkelä is active.

Publication


Featured researches published by Pirjo Käkelä.


Hepatology | 2015

Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease

Paola Dongiovanni; Salvatore Petta; Cristina Maglio; Anna Ludovica Fracanzani; Rosaria Maria Pipitone; Enrico Mozzi; Benedetta Maria Motta; Dorota Kaminska; Raffaela Rametta; Stefania Grimaudo; Serena Pelusi; Tiziana Montalcini; Anna Alisi; Marco Maggioni; Vesa Kärjä; Jan Borén; Pirjo Käkelä; Vito Di Marco; Chao Xing; Valerio Nobili; Bruno Dallapiccola; A. Craxì; Jussi Pihlajamäki; Silvia Fargion; Lars Sjöström; Lena Carlsson; Stefano Romeo; Luca Valenti

Excess hepatic storage of triglycerides is considered a benign condition, but nonalcoholic steatohepatitis (NASH) may progress to fibrosis and promote atherosclerosis. Carriers of the TM6SF2 E167K variant have fatty liver as a result of reduced secretion of very‐low‐density lipoproteins (VLDLs). As a result, they have lower circulating lipids and reduced risk of myocardial infarction. In this study, we aimed to assess whether TM6SF2 E167K affects liver damage and cardiovascular outcomes in subjects at risk of NASH. Liver damage was evaluated in 1,201 patients who underwent liver biopsy for suspected NASH; 427 were evaluated for carotid atherosclerosis. Cardiovascular outcomes were assessed in 1,819 controls from the Swedish Obese Subjects (SOS) cohort. Presence of the inherited TM6SF2 E167K variant was determined by TaqMan assays. In the liver biopsy cohort, 188 subjects (13%) were carriers of the E167K variant. They had lower serum lipid levels than noncarriers (P < 0.05), had more‐severe steatosis, necroinflammation, ballooning, and fibrosis (P < 0.05), and were more likely to have NASH (odds ratio [OR]: 1.84; 95% confidence interval [CI]: 1.23‐2.79) and advanced fibrosis (OR, 2.08; 95% CI: 1.20‐3.55), after adjustment for age, sex, body mass index, fasting hyperglycemia, and the I148M PNPLA3 risk variant. However, E167K carriers had lower risk of developing carotid plaques (OR, 0.49; 95% CI: 0.25‐0.94). In the SOS cohort, E167K carriers had higher alanine aminotransferase ALT and lower lipid levels (P < 0.05), as well as a lower incidence of cardiovascular events (hazard ratio: 0.61; 95% CI: 0.39‐0.95). Conclusions: Carriers of the TM6SF2 E167K variant are more susceptible to progressive NASH, but are protected against cardiovascular disease. Our findings suggest that reduced ability to export VLDLs is deleterious for the liver. (Hepatology 2015;61:506‐514)


Journal of Hepatology | 2015

Statin use and non-alcoholic steatohepatitis in at risk individuals

Paola Dongiovanni; Salvatore Petta; Ville Männistö; Rosellina Margherita Mancina; Rosaria Maria Pipitone; Vesa Kärjä; Marco Maggioni; Pirjo Käkelä; Olov Wiklund; Enrico Mozzi; Stefania Grimaudo; Dorota Kaminska; Raffaela Rametta; A. Craxì; Silvia Fargion; Valerio Nobili; Stefano Romeo; Jussi Pihlajamäki; Luca Valenti

BACKGROUND & AIMS Excess hepatic free cholesterol contributes to the pathogenesis of non-alcoholic steatohepatitis, and statins reduce cholesterol synthesis. Aim of this study was to assess whether statin use is associated with histological liver damage related to steatohepatitis. METHODS The relationship between statin use, genetic risk factors, and liver damage was assessed in a multi-center cohort of 1201 European individuals, who underwent liver biopsy for suspected non-alcoholic steatohepatitis. RESULTS Statin use was recorded in 107 subjects, and was associated with protection from steatosis, NASH, and fibrosis stage F2-F4, in a dose-dependent manner (adjusted p<0.05 for all). In 100 treated patients matched 1:1 for modality of recruitment, gender, presence of IFG or type 2 diabetes, PNPLA3 I148M risk alleles, TM6SF2 E167K variant, age, and BMI, statin use remained associated with protection from steatosis (OR 0.09, 95% C.I. 0.01-0.32; p=0.004), steatohepatitis (OR 0.25, 95% C.I. 0.13-0.47; p<0.001), and fibrosis stage F2-F4 (OR 0.42, 95% C.I. 0.20-0.8; p=0.017). Results were confirmed in a second analysis, where individuals were matched within recruitment center (p<0.05 for all). The protective effect of statins on steatohepatitis was stronger in subjects not carrying the I148M PNPLA3 risk variant (p=0.02 for interaction), as statins were negatively associated with steatohepatitis in patients negative (p<0.001), but not in those positive for the I148M variant (p=n.s.). CONCLUSIONS Statin use was associated with protection towards the full spectrum of liver damage in individuals at risk of non-alcoholic steatohepatitis. However, the I148M PNPLA3 risk variant limited this beneficial effect.


Gastroenterology | 2016

The MBOAT7-TMC4 Variant rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European Descent.

Rosellina Margherita Mancina; Paola Dongiovanni; Salvatore Petta; Piero Pingitore; Marica Meroni; R. Rametta; Jan Borén; Tiziana Montalcini; Arturo Pujia; Olov Wiklund; George Hindy; Rocco Spagnuolo; Benedetta Maria Motta; Rosaria Maria Pipitone; A. Craxì; Silvia Fargion; Valerio Nobili; Pirjo Käkelä; Vesa Kärjä; Ville Männistö; Jussi Pihlajamäki; Dermot F. Reilly; Jose Castro-Perez; Julia Kozlitina; Luca Valenti; Stefano Romeo

BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is a leading cause of liver damage and is characterized by steatosis. Genetic factors increase risk for progressive NAFLD. A genome-wide association study showed that the rs641738 C>T variant in the locus that contains the membrane bound O-acyltransferase domain-containing 7 gene (MBOAT7, also called LPIAT1) and transmembrane channel-like 4 gene (TMC4) increased the risk for cirrhosis in alcohol abusers. We investigated whether the MBOAT7-TMC4 is a susceptibility locus for the development and progression of NAFLD. METHODS We genotyped rs641738 in DNA collected from 3854 participants from the Dallas Heart Study (a multi-ethnic population-based probability sample of Dallas County residents) and 1149 European individuals from the Liver Biopsy Cross-Sectional Cohort. Clinical and anthropometric data were collected, and biochemical and lipidomics were measured in plasma samples from participants. A total of 2736 participants from the Dallas Heart Study also underwent proton magnetic resonance spectroscopy to measure hepatic triglyceride content. In the Liver Biopsy Cross-Sectional Cohort, a total of 1149 individuals underwent liver biopsy to diagnose liver disease and disease severity. RESULTS The genotype rs641738 at the MBOAT7-TMC4 locus associated with increased hepatic fat content in the 2 cohorts, and with more severe liver damage and increased risk of fibrosis compared with subjects without the variant. MBOAT7, but not TMC4, was found to be highly expressed in the liver. The MBOAT7 rs641738 T allele was associated with lower protein expression in the liver and changes in plasma phosphatidylinositol species consistent with decreased MBOAT7 function. CONCLUSIONS We provide evidence for an association between the MBOAT7 rs641738 variant and the development and severity of NAFLD in individuals of European descent. This association seems to be mediated by changes in the hepatic phosphatidylinositol acyl-chain remodeling.


Journal of Hepatology | 2012

Serum interleukin 1 receptor antagonist as an independent marker of non-alcoholic steatohepatitis in humans

Jussi Pihlajamäki; Tiina Kuulasmaa; Dorota Kaminska; Marko Simonen; Vesa Kärjä; Sari Grönlund; Pirjo Käkelä; Matti Pääkkönen; Sakari Kainulainen; Kari Punnonen; Johanna Kuusisto; Helena Gylling; Markku Laakso

BACKGROUND & AIMS Mechanisms leading to non-alcoholic steatohepatitis (NASH) have remained unclear, and non-invasive diagnosis of NASH is challenging. In this study, we investigated the benefits of measuring serum interleukin 1 receptor antagonist (IL-1RA) levels. METHODS Liver biopsies from 119 morbidly obese individuals (47.5 ± 9.0 years, BMI 44.9 ± 5.9 kg/m(2)) were used for histological and gene expression assessment. In a cross-sectional population-based cohort of 6447 men (58 ± 7 years, BMI 27.0 ± 3.9 kg/m(2)) the association of serum IL1-RA with serum alanine aminotransferase (ALT) levels was investigated. RESULTS Serum levels of IL-1RA, and liver mRNA expression of IL1RN are associated with NASH and the degree of lobular inflammation in liver (p<0.05). The decrease in serum IL-1RA level and expression of IL1RN after obesity surgery correlated with the improvement of lobular inflammation (p<0.05). We developed a novel NAFLD Liver Inflammation Score, including serum Il-1RA concentration, which performed better to diagnose NASH than did previously published scores. Results from the population study confirmed the potential of measuring serum IL-1RA level. The strongest determinants of the ALT concentration at the population level were Matsuda insulin sensitivity index (r(2)=0.130, p=7 × 10(-197)) and serum IL-1RA concentration (r(2)=0.074, p=1 × 10(-110)). IL-1RA concentrations associated significantly with ALT levels even after adjusting for BMI, alcohol consumption and insulin sensitivity (p=2 × 10(-21)). CONCLUSIONS IL-1RA serum levels associate with liver inflammation and serum ALT independently of obesity, alcohol consumption and insulin resistance, suggesting a potential use of IL-1RA as a non-invasive inflammatory marker for NASH.


Metabolism-clinical and Experimental | 2010

Cholesterol absorption decreases after Roux-en-Y gastric bypass but not after gastric banding.

Jussi Pihlajamäki; Sari Grönlund; Marko Simonen; Pirjo Käkelä; Leena Moilanen; Matti Pääkkönen; Elina Pirinen; Marjukka Kolehmainen; Vesa Kärjä; Sakari Kainulainen; Matti Uusitupa; Esko Alhava; Tatu A. Miettinen; Helena Gylling

The differences in cholesterol metabolism after the 2 most common forms of obesity surgery, Roux-en-Y gastric bypass (RYGB) and gastric banding (GB), have not been well characterized. In this study, effects of RYGB and GB on cholesterol absorption and synthesis were investigated. To this aim, 1-year follow-up of cholesterol metabolism in 2 nonrandomized cohorts undergoing either RYGB (n = 29; age, 45.2 +/- 7.7 years; body mass index [BMI], 46.0 +/- 6.1 kg/m(2)) or GB (n = 26; age, 45.9 +/- 8.6 years; BMI, 50.1 +/- 7.7 kg/m(2)) was performed in a university hospital center specializing in the treatment of morbid obesity. Serum markers of cholesterol synthesis (cholestenol, desmosterol, and lathosterol) and cholesterol absorption (campesterol, sitosterol, avenasterol, and cholestanol) were measured preoperatively and at follow-up and expressed as ratios to cholesterol. As expected based on observed weight loss (25% after RYGB and 17% after GB, P < .001 between groups), both operations decreased serum levels of cholesterol synthesis markers by 12% to 28% (all Ps < .001). A decrease in cholesterol absorption markers was only observed after RYGB (-26% for sitosterol) and not after GB (+16%, P = 2 x 10(-6) for difference between the groups). The difference in sitosterol ratio between the groups remained significant after adjustment for age, BMI, fasting insulin levels, and nutritional status (P = 2 x 10(-4)), indicating a specific effect related to RYGB. We conclude that decrease in cholesterol absorption is a novel beneficial effect of RYGB. Together with an improved control of blood glucose, this may contribute to a better cardiovascular risk profile after RYGB.


The Journal of Clinical Endocrinology and Metabolism | 2015

Epigenetic Alterations in Human Liver From Subjects With Type 2 Diabetes in Parallel With Reduced Folate Levels.

Emma Nilsson; Ashok Matte; Alexander Perfilyev; Vanessa D. de Mello; Pirjo Käkelä; Jussi Pihlajamäki; Charlotte Ling

OBJECTIVE Epigenetic variation may contribute to the development of complex metabolic diseases such as type 2 diabetes (T2D). Hepatic insulin resistance is a hallmark of T2D. However, it remains unknown whether epigenetic alterations take place in the liver from diabetic subjects. Therefore, we investigated the genome-wide DNA methylation pattern in the liver from subjects with T2D and nondiabetic controls and related epigenetic alterations to gene expression and circulating folate levels. RESEARCH DESIGN AND METHODS Liver biopsies were obtained from 35 diabetic and 60 nondiabetic subjects, which are part of the Kuopio Obesity Surgery Study. The genome-wide DNA methylation pattern was analyzed in the liver using the HumanMethylation450 BeadChip. RNA expression was analyzed from a subset of subjects using the HumanHT-12 Expression BeadChip. RESULTS After correction for multiple testing, we identified 251 individual CpG sites that exhibit differential DNA methylation in liver obtained from T2D compared with nondiabetic subjects (Q < .05). These include CpG sites annotated to genes that are biologically relevant to the development of T2D such as GRB10, ABCC3, MOGAT1, and PRDM16. The vast majority of the significant CpG sites (94%) displayed decreased DNA methylation in liver from subjects with T2D. The hypomethylation found in liver from diabetic subjects may be explained by reduced folate levels. Indeed, subjects with T2D had significantly reduced erythrocyte folate levels compared with nondiabetic subjects. We further identified 29 genes that displayed both differential DNA methylation and gene expression in human T2D liver including the imprinted gene H19. CONCLUSIONS Our study highlights the importance of epigenetic and transcriptional changes in the liver from subjects with T2D. Reduced circulating folate levels may provide an explanation for hypomethylation in the human diabetic liver.


Diabetes | 2012

Adipose Tissue TCF7L2 Splicing Is Regulated by Weight Loss and Associates With Glucose and Fatty Acid Metabolism

Dorota Kaminska; Tiina Kuulasmaa; Sari Venesmaa; Pirjo Käkelä; Maija Vaittinen; Leena Pulkkinen; Matti Pääkkönen; Helena Gylling; Markku Laakso; Jussi Pihlajamäki

We investigated the effects of obesity surgery-induced weight loss on transcription factor 7-like 2 gene (TCF7L2) alternative splicing in adipose tissue and liver. Furthermore, we determined the association of TCF7L2 splicing with the levels of plasma glucose and serum free fatty acids (FFAs) in three independent studies (n = 216). Expression of the short mRNA variant, lacking exons 12, 13, and 13a, decreased after weight loss in subcutaneous fat (n = 46) and liver (n = 11) and was more common in subcutaneous fat of subjects with type 2 diabetes than in subjects with normal glucose tolerance in obese individuals (n = 54) and a population-based sample (n = 49). Additionally, there was a positive correlation between this variant and the level of fasting glucose in nondiabetic individuals (n = 113). This association between TCF7L2 splicing and plasma glucose was independent of the TCF7L2 genotype. Finally, this variant was associated with high levels of serum FFAs during hyperinsulinemia, suggesting impaired insulin action in adipose tissue, whereas no association with insulin secretion or insulin-stimulated whole-body glucose uptake was observed. Our study shows that the short TCF7L2 mRNA variant in subcutaneous fat is regulated by weight loss and is associated with hyperglycemia and impaired insulin action in adipose tissue.


Journal of Lipid Research | 2014

Lipoprotein subclass metabolism in nonalcoholic steatohepatitis.

Ville Männistö; Marko Simonen; Pasi Soininen; Mika Tiainen; Antti J. Kangas; Dorota Kaminska; Sari Venesmaa; Pirjo Käkelä; Vesa Kärjä; Helena Gylling; Mika Ala-Korpela; Jussi Pihlajamäki

Nonalcoholic steatohepatitis (NASH) is associated with increased synthesis of triglycerides and cholesterol coupled with increased VLDL synthesis in the liver. In addition, increased cholesterol content in the liver associates with NASH. Here we study the association of lipoprotein subclass metabolism with NASH. To this aim, liver biopsies from 116 morbidly obese individuals [age 47.3 ± 8.7 (mean ± SD) years, BMI 45.1 ± 6.1 kg/m2, 39 men and 77 women] were used for histological assessment. Proton NMR spectroscopy was used to measure lipid concentrations of 14 lipoprotein subclasses in native serum samples at baseline and after obesity surgery. We observed that total lipid concentration of VLDL and LDL subclasses, but not HDL subclasses, associated with NASH [false discovery rate (FDR) < 0.1]. More specifically, total lipid and cholesterol concentration of VLDL and LDL subclasses associated with inflammation, fibrosis, and cell injury (FDR < 0.1), independent of steatosis. Cholesterol concentration of all VLDL subclasses also correlated with total and free cholesterol content in the liver. All NASH-related changes in lipoprotein subclasses were reversed by obesity surgery. High total lipid and cholesterol concentration of serum VLDL and LDL subclasses are linked to cholesterol accumulation in the liver and to liver cell injury in NASH.


Metabolism-clinical and Experimental | 2016

Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity.

Paula Walle; Markus Takkunen; Ville Männistö; Maija Vaittinen; Maria Lankinen; Vesa Kärjä; Pirjo Käkelä; Jyrki Ågren; Mika Tiainen; Ursula Schwab; Johanna Kuusisto; Markku Laakso; Jussi Pihlajamäki

BACKGROUND Non-alcoholic steatohepatitis (NASH) is associated with changes in fatty acid (FA) metabolism. However, specific changes in metabolism and hepatic mRNA expression related to NASH independent of simple steatosis, obesity and diet are unknown. METHODS Liver histology, serum and liver FA composition and estimated enzyme activities based on the FA ratios in cholesteryl esters and triglycerides were assessed in 92 obese participants of the Kuopio Obesity Surgery Study (KOBS) divided to those with normal liver, steatosis or NASH (30 men and 62 women, age 46.8±9.5years (mean±SD), BMI 44.2±6.2kg/m(2)). Plasma FA composition was also investigated in the Metabolic Syndrome in Men (METSIM) Study (n=769), in which serum alanine aminotransferase (ALT) was used as a marker of liver disease. RESULTS Obese individuals with NASH had higher activity of estimated activities of delta-6 desaturase (D6D, p<0.002) and stearoyl-CoA desaturase 1 (SCD1, p<0.002) and lower activity of delta-5 desaturase (D5D, p<0.002) when compared to individuals with normal liver. Estimated activities of D5D, D6D and SCD1 correlated positively between liver and serum indicating that serum estimates reflected liver metabolism. Accordingly, NASH was associated with higher hepatic mRNA expression of corresponding genes FADS1, FADS2 and SCD. Finally, differences in FA metabolism that associated with NASH in obese individuals were also associated with high ALT in the METSIM Study. CONCLUSIONS We demonstrated alterations in FA metabolism and endogenous desaturase activities that associate with NASH, independent of obesity and diet. This suggests that changes in endogenous FA metabolism are related to NASH and that they may contribute to the progression of the disease.


Hepatology | 2013

Desmosterol in human nonalcoholic steatohepatitis

Marko Simonen; Ville Männistö; Joel Leppänen; Dorota Kaminska; Vesa Kärjä; Sari Venesmaa; Pirjo Käkelä; Johanna Kuusisto; Helena Gylling; Markku Laakso; Jussi Pihlajamäki

Dysregulation of the cholesterol synthesis pathway and accumulation of cholesterol in the liver are linked to the pathogenesis of nonalcoholic steatohepatitis (NASH). Therefore, we investigated the association of serum and liver levels of cholesterol precursors with NASH. Liver histology was assessed in 110 obese patients (Kuopio Obesity Surgery Study [KOBS] study, age 43.7 ± 8.1 years [mean ± standard deviation, SD], body mass index [BMI] 45.0 ± 6.1 kg/m2). Serum and liver levels of cholesterol precursors were measured with gas‐liquid chromatography. The association between cholesterol precursors and serum alanine aminotransferase (ALT), as a marker of liver disease, was also investigated in a population cohort of 717 men (Metabolic Syndrome in Men Study [METSIM] study, age 57.6 ± 5.8 years, BMI 27.1 ± 4.0 kg/m2). Serum desmosterol levels and the desmosterol‐to‐cholesterol ratio were higher in individuals with NASH, but not in individuals with simple steatosis, compared to obese subjects with normal liver histology (P = 0.002 and P = 0.003, respectively). Levels of serum and liver desmosterol correlated strongly (r = 0.667, P = 1 × 10−9), suggesting a shared regulation. Both serum and liver desmosterol levels correlated positively with steatosis and inflammation in the liver (P < 0.05). Serum desmosterol had a higher correlation with the accumulation of cholesterol in the liver than serum cholesterol. Serum desmosterol levels (P = 2 × 10−6) and the serum desmosterol‐to‐cholesterol ratio (P = 5 × 10−5) were associated with serum ALT in the population study. Conclusion: Levels of desmosterol in serum and the liver were associated with NASH. These results suggest that serum desmosterol is a marker of disturbed cholesterol metabolism in the liver. Whether desmosterol has a more specific role in the pathophysiology of NASH compared to other cholesterol precursors needs to be investigated. (Hepatology 2013;53:976–982)

Collaboration


Dive into the Pirjo Käkelä's collaboration.

Top Co-Authors

Avatar

Jussi Pihlajamäki

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Dorota Kaminska

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Ville Männistö

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Helena Gylling

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar

Sari Venesmaa

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Vesa Kärjä

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Maija Vaittinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Markku Laakso

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Marko Simonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Johanna Kuusisto

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge