Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pirjo Laakkonen is active.

Publication


Featured researches published by Pirjo Laakkonen.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Nanocrystal targeting in vivo

Maria E. Åkerman; Warren C. W. Chan; Pirjo Laakkonen; Sangeeta N. Bhatia; Erkki Ruoslahti

Inorganic nanostructures that interface with biological systems have recently attracted widespread interest in biology and medicine. Nanoparticles are thought to have potential as novel intravascular probes for both diagnostic (e.g., imaging) and therapeutic purposes (e.g., drug delivery). Critical issues for successful nanoparticle delivery include the ability to target specific tissues and cell types and escape from the biological particulate filter known as the reticuloendothelial system. We set out to explore the feasibility of in vivo targeting by using semiconductor quantum dots (qdots). Qdots are small (<10 nm) inorganic nanocrystals that possess unique luminescent properties; their fluorescence emission is stable and tuned by varying the particle size or composition. We show that ZnS-capped CdSe qdots coated with a lung-targeting peptide accumulate in the lungs of mice after i.v. injection, whereas two other peptides specifically direct qdots to blood vessels or lymphatic vessels in tumors. We also show that adding polyethylene glycol to the qdot coating prevents nonselective accumulation of qdots in reticuloendothelial tissues. These results encourage the construction of more complex nanostructures with capabilities such as disease sensing and drug delivery.


Nature | 2008

Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation

Tuomas Tammela; Georgia Zarkada; Elisabet Wallgard; Aino Murtomäki; Steven Suchting; Maria Wirzenius; Marika Waltari; Mats Hellström; Tibor Schomber; Reetta Peltonen; Catarina Freitas; Antonio Duarte; Helena Isoniemi; Pirjo Laakkonen; Gerhard Christofori; Seppo Ylä-Herttuala; Bronislaw Pytowski; Anne Eichmann; Christer Betsholtz; Kari Alitalo

Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is a key process in several pathological conditions, including tumour growth and age-related macular degeneration. Vascular endothelial growth factors (VEGFs) stimulate angiogenesis and lymphangiogenesis by activating VEGF receptor (VEGFR) tyrosine kinases in endothelial cells. VEGFR-3 (also known as FLT-4) is present in all endothelia during development, and in the adult it becomes restricted to the lymphatic endothelium. However, VEGFR-3 is upregulated in the microvasculature of tumours and wounds. Here we demonstrate that VEGFR-3 is highly expressed in angiogenic sprouts, and genetic targeting of VEGFR-3 or blocking of VEGFR-3 signalling with monoclonal antibodies results in decreased sprouting, vascular density, vessel branching and endothelial cell proliferation in mouse angiogenesis models. Stimulation of VEGFR-3 augmented VEGF-induced angiogenesis and sustained angiogenesis even in the presence of VEGFR-2 (also known as KDR or FLK-1) inhibitors, whereas antibodies against VEGFR-3 and VEGFR-2 in combination resulted in additive inhibition of angiogenesis and tumour growth. Furthermore, genetic or pharmacological disruption of the Notch signalling pathway led to widespread endothelial VEGFR-3 expression and excessive sprouting, which was inhibited by blocking VEGFR-3 signals. Our results implicate VEGFR-3 as a regulator of vascular network formation. Targeting VEGFR-3 may provide additional efficacy for anti-angiogenic therapies, especially towards vessels that are resistant to VEGF or VEGFR-2 inhibitors.


Nature Medicine | 2002

A tumor-homing peptide with a targeting specificity related to lymphatic vessels.

Pirjo Laakkonen; Kimmo Porkka; Jason A. Hoffman; Erkki Ruoslahti

Blood vessels of tumors carry specific markers that are usually angiogenesis-related. We previously used phage-displayed peptide libraries in vivo to identify peptides that home to tumors through the circulation and that specifically bind to the endothelia of tumor blood vessels. Here we devised a phage screening procedure that would favor tumor-homing to targets that are accessible to circulating phage, but are not blood vessels. Screening on MDA-MB-435 breast carcinoma xenografts yielded multiple copies of a phage that displays a cyclic 9-amino-acid peptide, LyP-1. Homing and binding to tumor-derived cell suspensions indicated that LyP-1 also recognizes an osteosarcoma xenograft, and spontaneous prostate and breast cancers in transgenic mice, but not two other tumor xenografts. Fluorescein-labeled LyP-1 peptide was detected in tumor structures that were positive for three lymphatic endothelial markers and negative for three blood vessel markers. LyP-1 accumulated in the nuclei of the putative lymphatic cells, and in the nuclei of tumor cells. These results suggest that tumor lymphatics carry specific markers and that it may be possible to specifically target therapies into tumor lymphatics.


Journal of The American Society of Nephrology | 2004

Lymphatic Neoangiogenesis in Human Kidney Transplants Is Associated with Immunologically Active Lymphocytic Infiltrates

Dontscho Kerjaschki; Heinrich M. Regele; Isabella Moosberger; Katalyn Nagy-Bojarski; Bruno Watschinger; Afschin Soleiman; Peter Birner; Sigurd Krieger; Anny Hovorka; Georg Silberhumer; Pirjo Laakkonen; Tatiana V. Petrova; Brigitte Langer; Ingrid Raab

Renal transplant rejection is caused by a lymphocyte-rich inflammatory infiltrate that attacks cortical tubules and endothelial cells. Immunosuppressive therapy reduces the number of infiltrating cells; however, their exit routes are not known. Here a >50-fold increase of lymphatic vessel density over normal kidneys in grafts with nodular mononuclear infiltrates is demonstrated by immunohistochemistry on human renal transplant biopsies using antibodies to the lymphatic endothelial marker protein podoplanin. Nodular infiltrates are constantly associated with newly formed, Ki-67-expressing lymphatic vessels and contain the entire repertoire of T and B lymphocytes to provide specific cellular and humoral alloantigenic immune responses, including Ki-67(+) CD4(+) and CD8(+) T lymphocytes, S100(+) dendritic cells, and Ki-67(+)CD20(+) B lymphocytes and lambda- and kappa-chain-expressing plasmacytoid cells. Numerous chemokine receptor CCR7(+) cells within the nodular infiltrates seemed to be attracted by secondary lymphatic chemokine (SLC/CCL21) that is produced and released by lymphatic endothelial cells in a complex with podoplanin. From these results, it is speculated that lymphatic neoangiogenesis not only contributes to the export of the rejection infiltrate but also is involved in the maintenance of a potentially detrimental alloreactive immune response in renal transplants and provides a novel therapeutic target.


Journal of Cell Biology | 2003

Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels

Sven Christian; Jan Pilch; Maria E. Åkerman; Kimmo Porkka; Pirjo Laakkonen; Erkki Ruoslahti

A tumor-homing peptide, F3, selectively binds to endothelial cells in tumor blood vessels and to tumor cells. Here, we show that the cell surface molecule recognized by F3 is nucleolin. Nucleolin specifically bound to an F3 peptide affinity matrix from extracts of cultured breast carcinoma cells. Antibodies and cell surface biotin labeling revealed nucleolin at the surface of actively growing cells, and these cells bound and internalized fluorescein-conjugated F3 peptide, transporting it into the nucleus. In contrast, nucleolin was exclusively nuclear in serum-starved cells, and F3 did not bind to these cells. The binding and subsequent internalization of F3 were blocked by an antinucleolin antibody. Like the F3 peptide, intravenously injected antinucleolin antibodies selectively accumulated in tumor vessels and in angiogenic vessels of implanted “matrigel” plugs. These results show that cell surface nucleolin is a specific marker of angiogenic endothelial cells within the vasculature. It may be a useful target molecule for diagnostic tests and drug delivery applications.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo

Kimmo Porkka; Pirjo Laakkonen; Jason A. Hoffman; Michele Bernasconi; Erkki Ruoslahti

We used a screening procedure to identify protein domains from phage-displayed cDNA libraries that bind both to bone marrow endothelial progenitor cells and tumor vasculature. Screening phage for binding of progenitor cell-enriched bone marrow cells in vitro, and for homing to HL-60 human leukemia cell xenograft tumors in vivo, yielded a cDNA fragment that encodes an N-terminal fragment of human high mobility group protein 2 (HMGN2, formerly HMG-17). Upon i.v. injection, phage displaying this HMGN2 fragment homed to HL-60 and MDA-MB-435 tumors. Testing of subfragments localized the full binding activity to a 31-aa peptide (F3) in the HMGN2 sequence. Fluorescein-labeled F3 peptide bound to and was internalized by HL-60 cells and human MDA-MB-435 breast cancer cells, appearing initially in the cytoplasm and then in the nuclei of these cells. Fluorescent F3 accumulated in HL-60 and MDA-MB-435 tumors after an i.v. injection, appearing in the nuclei of tumor endothelial cells and tumor cells. Thus, F3 can carry a payload (phage, fluorescein) to a tumor and into the cell nuclei in the tumor. This peptide may be suitable for targeting cytotoxic drugs and gene therapy vectors into tumors.


Cancer Cell | 2003

Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis

Johanna A. Joyce; Pirjo Laakkonen; Michele Bernasconi; Gabriele Bergers; Erkki Ruoslahti; Douglas Hanahan

The vasculature in the angiogenic stages of a mouse model of pancreatic islet carcinogenesis was profiled in vivo with phage libraries that display short peptides. We characterized seven peptides distinguished by their differential homing to angiogenic progenitors, solid tumors, or both. None homed appreciably to normal pancreatic islets or other organs. Five peptides selectively homed to neoplastic lesions in the pancreas and not to islet beta cell tumors growing subcutaneously, xenotransplant tumors from a human cancer cell line, or an endogenously arising squamous cell tumor of the skin. Three peptides with distinctive homing to angiogenic islets, tumors, or both colocalized with markers that identify endothelial cells or pericytes. One peptide is homologous with pro-PDGF-B, which is expressed in endothelial cells, while its receptor is expressed in pericytes.


Cancer Research | 2007

Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth.

Pirjo Laakkonen; Marika Waltari; Tanja Holopainen; Takashi Takahashi; Bronislaw Pytowski; Philipp Steiner; Daniel J. Hicklin; Kris Persaud; James R. Tonra; Larry Witte; Kari Alitalo

Vascular endothelial growth factor receptor 3 (VEGFR-3) binds VEGF-C and VEGF-D and is essential for the development of the lymphatic vasculature. Experimental tumors that overexpress VEGFR-3 ligands induce lymphatic vessel sprouting and enlargement and show enhanced metastasis to regional lymph nodes and beyond, whereas a soluble form of VEGFR-3 that blocks receptor signaling inhibits these changes and metastasis. Because VEGFR-3 is also essential for the early blood vessel development in embryos and is up-regulated in tumor angiogenesis, we wanted to determine if an antibody targeting the receptor that interferes with VEGFR-3 ligand binding can inhibit primary tumor growth. Our results show that antibody interference with VEGFR-3 function can inhibit the growth of several human tumor xenografts in immunocompromised mice. Immunohistochemical analysis showed that the blood vessel density of anti-VEGFR-3-treated tumors was significantly decreased and hypoxic and necrotic tumor tissue was increased when compared with tumors treated with control antibody, indicating that blocking of the VEGFR-3 pathway inhibits angiogenesis in these tumors. As expected, the anti-VEGFR-3-treated tumors also lacked lymphatic vessels. These results suggest that the VEGFR-3 pathway contributes to tumor angiogenesis and that effective inhibition of tumor progression may require the inhibition of multiple angiogenic targets.


Journal of Cell Science | 2006

Characterization of the Rab8-specific membrane traffic route linked to protrusion formation

Katarina Hattula; Johanna Furuhjelm; Jaana Tikkanen; Kimmo Tanhuanpää; Pirjo Laakkonen; Johan Peränen

Rab8 has a drastic effect on cell shape, but the membrane trafficking route it regulates is poorly defined. Here, we show that endogenous and ectopically expressed Rab8 is associated with macropinosomes generated at ruffling membrane domains. These macropinosomes fuse or transform into tubules that move toward the cell center, from where they are recycled back to the leading edge. The biogenesis of these tubules is dependent on actin and microtubular dynamics. Expression of dominant-negative Rab8 mutants or depletion of Rab8 by RNA interference inhibit protrusion formation, but promote cell-cell adhesion and actin stress fiber formation, whereas expression of the constitutively active Rab8-Q67L has the opposite effect. Rab8 localization overlaps with both Rab11 and Arf6, and is functionally linked to Arf6. We also demonstrate that Rab8 activity is needed for the transport of transferrin and the transferrin receptor to the pericentriolar region and to cell protrusions, and that Rab8 controls the traffic of cholera toxin B to the Golgi compartment. Finally, Rab8 colocalizes and binds specifically to a synaptotagmin-like protein (Slp1/JFC1), which is involved in controlling Rab8 membrane dynamics. We propose that Rab8 regulates a membrane-recycling pathway that mediates protrusion formation.


Journal of Clinical Investigation | 2007

Reactivation of the p53 pathway as a treatment modality for KSHV-induced lymphomas

Grzegorz Sarek; Sari Kurki; Juulia Enbäck; Guergana Iotzova; Juergen Haas; Pirjo Laakkonen; Marikki Laiho; Päivi M. Ojala

Kaposis sarcoma herpesvirus (KSHV) is the etiologic agent for primary effusion lymphoma (PEL), a non-Hodgkin type lymphoma manifesting as an effusion malignancy in the affected individual. Although KSHV has been recognized as a tumor virus for over a decade, the pathways for its tumorigenic conversion are incompletely understood, which has greatly hampered the development of efficient therapies for KSHV-induced malignancies like PEL and Kaposis sarcoma. There are no current therapies effective against the aggressive, KSHV-induced PEL. Here we demonstrate that activation of the p53 pathway using murine double minute 2 (MDM2) inhibitor Nutlin-3a conveyed specific and highly potent activation of PEL cell killing. Our results demonstrated that the KSHV latency-associated nuclear antigen (LANA) bound to both p53 and MDM2 and that the MDM2 inhibitor Nutlin-3a disrupted the p53-MDM2-LANA complex and selectively induced massive apoptosis in PEL cells. Together with our results indicating that KSHV-infection activated DNA damage signaling, these findings contribute to the specificity of the cytotoxic effects of Nutlin-3a in KSHV-infected cells. Moreover, we showed that Nutlin-3a had striking antitumor activity in vivo in a mouse xenograft model. Our results therefore present new options for exploiting reactivation of p53 as what we believe to be a novel and highly selective treatment modality for this virally induced lymphoma.

Collaboration


Dive into the Pirjo Laakkonen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannu Koistinen

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar

Ulf-Håkan Stenman

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar

Harri Sihto

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johanna M. Mattsson

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge