Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pirjo Pakarinen is active.

Publication


Featured researches published by Pirjo Pakarinen.


Cell | 1995

Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure

Kristiina Aittomäki; JoséLuis Dieguez Lucena; Pirjo Pakarinen; Pertti Sistonen; Juha S. Tapanainen; Jörg Gromoll; Riitta Kaskikari; Eeva-Marja Sankila; Heikki Lehväslaiho; Armando Reyes Engel; Eberhard Nieschlag; Ilpo Huhtaniemi; Albert de la Chapelle

Hypergonadotropic ovarian dysgenesis (ODG) with normal karyotype is a heterogeneous condition that in some cases displays Mendelian recessive inheritance. By systematically searching for linkage in multiplex affected families, we mapped a locus for ODG to chromosome 2p. As the previously cloned follicle-stimulating hormone receptor (FSHR) gene had been assigned to 2p, we searched it for mutations. A C566T transition in exon 7 of FSHR predicting an Ala to Val substitution at residue 189 in the extracellular ligand-binding domain segregated perfectly with the disease phenotype. Expression of the gene in transfected cells demonstrated a dramatic reduction of binding capacity and signal transduction, but apparently normal ligand-binding affinity of the mutated receptor. We conclude that the mutation causes ODG in these families.


Endocrinology | 2009

Increased Exposure to Estrogens Disturbs Maturation, Steroidogenesis, and Cholesterol Homeostasis via Estrogen Receptor α in Adult Mouse Leydig Cells

Leena Strauss; Jenny Kallio; Nimisha Desai; Pirjo Pakarinen; Tatu A. Miettinen; Helena Gylling; Martin Albrecht; Sari Mäkelä; Artur Mayerhofer; Matti Poutanen

Deteriorated male reproductive health has been connected to overexposure to estrogens or to imbalanced androgen-estrogen ratio. Transgenic male mice expressing human aromatase (AROM(+) mice) serve as an apt model for the study of the consequences of an altered androgen-estrogen ratio. Our previous studies with AROM(+) mice showed that low androgen levels together with high estrogen levels result in cryptorchidism and infertility. In the present study, the AROM(+) mice were shown to have severe abnormalities in the structure and function of Leydig cells before the appearance of spermatogenic failure. Decreased expression of adult-type Leydig cell markers (Ptgds, Vcam1, Insl3, Klk21, -24 and -27, Star, Cyp17a1, and Hsd17b3) indicated an immature developmental stage of the Leydig cells, which appears to be the first estrogen-dependent alteration. Genes involved in steroidogenesis (Star, Cyp17a1, and Hsd17b3) were suppressed despite normal LH levels. The low expression level of kallikreins 21, 24, and 27 potentially further inhibited Leydig cell function via remodeling extracellular matrix composition. In connection with disrupted steroidogenesis, Leydig cells showed enlarged mitochondria, a reduced amount of smooth endoplasmic reticulum, and an accumulation of cholesterol and precursors for cholesterol synthesis. The results of studies with AROM(+) mice crossed with estrogen receptor alpha or beta (ERalpha and ERbeta, respectively) knockout mice lead to the conclusion that the structural and functional disorders caused by estrogen exposure were mediated via ERalpha, whereas ERbeta was not involved.


Journal of Endocrinology | 2012

The diversity of sex steroid action: novel functions of hydroxysteroid (17β) dehydrogenases as revealed by genetically modified mouse models

Taija Saloniemi; Heli Jokela; Leena Strauss; Pirjo Pakarinen; Matti Poutanen

Disturbed action of sex steroid hormones, i.e. androgens and estrogens, is involved in the pathogenesis of various severe diseases in humans. Interestingly, recent studies have provided data further supporting the hypothesis that the circulating hormone concentrations do not explain all physiological and pathological processes observed in hormone-dependent tissues, while the intratissue sex steroid concentrations are determined by the expression of steroid metabolising enzymes in the neighbouring cells (paracrine action) and/or by target cells themselves (intracrine action). This local sex steroid production is also a valuable treatment option for developing novel therapies against hormonal diseases. Hydroxysteroid (17β) dehydrogenases (HSD17Bs) compose a family of 14 enzymes that catalyse the conversion between the low-active 17-keto steroids and the highly active 17β-hydroxy steroids. The enzymes frequently expressed in sex steroid target tissues are, thus, potential drug targets in order to lower the local sex steroid concentrations. The present review summarises the recent data obtained for the role of HSD17B1, HSD17B2, HSD17B7 and HSD17B12 enzymes in various metabolic pathways and their physiological and pathophysiological roles as revealed by the recently generated genetically modified mouse models. Our data, together with that provided by others, show that, in addition to having a role in sex steroid metabolism, several of these HSD17B enzymes possess key roles in other metabolic processes: for example, HD17B7 is essential for cholesterol biosynthesis and HSD17B12 is involved in elongation of fatty acids. Additional studies in vitro and in vivo are to be carried out in order to fully define the metabolic role of the HSD17B enzymes and to evaluate their value as drug targets.


General and Comparative Endocrinology | 2008

The gonadotropin receptors FSH-R and LH-R of Atlantic halibut (Hippoglossus hippoglossus)—2. Differential follicle expression and asynchronous oogenesis

Tamae Kobayashi; Pirjo Pakarinen; Jacob Torgersen; Ilpo Huhtaniemi; Øivind Andersen

The biological activity and spatio-temporal expression patterns of the gonadotropin receptors FSH-R and LH-R were examined in the repetitive spawner Atlantic halibut to elucidate the gonadotropic regulation of the asynchronous follicle development. The cloned receptors were expressed in mammalian COS-7 cells, and stimulation with sea bass FSH and LH increased the cAMP production. The halibut FSH-R and LH-R genes were shown to be highly expressed in the gonads of sexually mature fish, but the transcripts were also found in extra-gonadal tissues such as pituitary and brain. Different expression patterns of FSH-R and LH-R in the developing follicles were documented by semi-quantitative RT-PCR. Abundant FSH-R mRNA was found in the small follicles during primary growth and vitellogenesis, and the signals were localized to the granulosa cells by in situ hybridization. In contrast, follicular LH-R mRNA was hardly detectable during the early stages. Conversely, in follicles during final maturation FSH-R mRNA levels tended to decrease, while the expression of LH-R was highly upregulated. Whereas the pituitary FSH and LH are asynchronously expressed in annual spawners, both gonadotropins were expressed in the female halibut pituitary throughout the reproductive cycle, except in the prespawning females. Hence, the sequential gonadotropic activation of ovarian follicle growth and maturation in repetitive spawners is probably regulated by modulating the temporal expression of FSH-R and LH-R in the follicle membrane.


Endocrinology | 2010

Hydroxysteroid (17β) Dehydrogenase 7 Activity Is Essential for Fetal de Novo Cholesterol Synthesis and for Neuroectodermal Survival and Cardiovascular Differentiation in Early Mouse Embryos

Heli Jokela; Pia Rantakari; Tarja Lamminen; Leena Strauss; Roxana Ola; Aino-Liisa Mutka; Helena Gylling; Tatu A. Miettinen; Pirjo Pakarinen; Kirsi Sainio; Matti Poutanen

Hydroxysteroid (17beta) dehydrogenase 7 (HSD17B7) has been shown to catalyze the conversion of both estrone to estradiol (17-ketosteroid reductase activity) and zymosterone to zymosterol (3-ketosteroid reductase activity involved in cholesterol biosynthesis) in vitro. To define the metabolic role of the enzyme in vivo, we generated knockout mice deficient in the enzyme activity (HSD17B7KO). The data showed that the lack of HSD17B7 results in a blockage in the de novo cholesterol biosynthesis in mouse embryos in vivo, and HSD17BKO embryos die at embryonic day (E) 10.5. Analysis of neural structures revealed a defect in the development of hemispheres of the front brain with an increased apoptosis in the neuronal tissues. Morphological defects in the cardiovascular system were also observed from E9.5 onward. Mesodermal, endodermal, and hematopoietic cells were all detected by the histological analysis of the visceral yolk sac, whereas no organized vessels were observed in the knockout yolk sac. Immunohistological staining for platelet endothelial cell adhesion molecule-1 indicated that the complexity of the vasculature also was reduced in the HSD17B7KO embryos, particularly in the head capillary plexus and branchial arches. At E8.5-9.5, the heart development and the looping of the heart appeared to be normal in the HSD17B7KO embryos. However, at E10.5 the heart was dilated, and the thickness of the cardiac muscle and pericardium in the HSD17B7KO embryos was markedly reduced, and immunohistochemical staining for GATA-4 revealed that HSD17B7KO embryos had a reduced number of myocardial cells. The septum of the atrium was also defected in the knockout mice.


Archives of Medical Research | 1999

Follicle-Stimulating Hormone Ligand and Receptor Mutations, and Gonadal Dysfunction

Jérôme Levallet; Pirjo Pakarinen; Ilpo Huhtaniemi

In contrast to the general contention, infertility can be an inherited condition. Some of the genetic causes of male and female infertility have turned out to be due to inactivating mutations in the gonadotropin and gonadotropin receptor genes. The topic of the present text is to review current knowledge on mutations affecting the function of follicle-stimulating hormone (FSH). This gonadotropin, by binding to its specific G protein-coupled cell membrane receptor (FSHR), is important for normal gonadal function. Mutations affecting gonadotropin genes are extremely rare, but recent genetic studies have revealed that the pathogenesis of subfertility or infertility can be due to mutations in the FSH receptor (FSHR) gene. While mutations affecting FSHR are sporadic, polymorphism of the FSHR gene seems to be a common phenomenon. To date, six inactivating and only one activating mutation have been detected in the FSHR gene. In contrast to LHR gene, the majority of these mutations affect the extracellular domain of the receptor. Together with animal models using the transgenic and knock-out approaches, systematic analysis of alterations in the FSHR gene increases our knowledge on the structure and function of the FSHR and demonstrates that the integrity of each FSHR segment is required for proper expression of the fully active protein and for normal gonadal function. Mutations in the FSHR gene have different consequences in the reproductive function depending on the sex of the patient: while normal ovarian function is critically dependent on FSH, male fertility is possible with minimal or absent FSH action.


Biology of Reproduction | 2009

Impact of the Chemotherapy Cocktail Used to Treat Testicular Cancer on the Gene Expression Profile of Germ Cells from Male Brown-Norway Rats

Geraldine Delbes; Donovan Chan; Pirjo Pakarinen; Jacquetta M. Trasler; Barbara F. Hales; Bernard Robaire

Abstract Advances in treatment for testicular cancer that include the coadministration of bleomycin, etoposide, and cisplatin (BEP) have brought the cure rate to higher than 90%%. The goal of this study was to elucidate the impact of BEP treatment on gene expression in male germ cells. Brown-Norway rats were treated for 9 wk with vehicle (0×) or BEP at doses equivalent to 0.3× and 0.6× the human dose. At the end of treatment, spermatogenesis was affected, showing altered histology and a decreased sperm count; spermatozoa had a higher number of DNA breaks. After 9 wk of treatment, round spermatids were isolated, and RNA was extracted and probed on Rat230–2.0 Affymetrix arrays. Of the 31 099 probe sets present on the array, 59%% were expressed in control round spermatids. BEP treatment significantly altered the expression of 221 probe sets, with at least a 1.5-fold change compared with controls; 80%% were upregulated. We observed a dose-dependent increase in the expression of oxidative stress response genes and no change in the expression of genes involved in DNA repair. BEP upregulated genes were implicated in pathways related to Jun and Junb protooncogenes. Increased mRNA levels of Jun and Junb were confirmed by quantitative RT-PCR; furthermore, JUN protein was increased in elongating spermatids. Thus, BEP exposure triggers an oxidative stress response in round spermatids and induces many pathways that may lead to the survival of damaged cells and production of abnormal sperm.


Molecular and Cellular Endocrinology | 1994

Transcriptional and translational regulation of LH, prolactin and their testicular receptors by hCG and bromocriptine treatments in adult and neonatal rats

Pirjo Pakarinen; T. Niemimaa; Ilpo Huhtaniemi; Dwight W. Warren

Effects of altered gonadotropin and prolactin (PRL) secretion on luteinizing hormone (LH), PRL and their testicular receptors (R) were studied in neonatal and adult rats. Changes in gene expression were monitored by measurements of steady-state mRNA levels. Five-day and 90-day-old male rats received a single s.c. injection of hCG (600 IU/kg), 1 mg/kg bromocriptine (BR) twice daily, or their combination. After 2 or 8 days, the responses of LH, PRL, their testicular R, and testosterone (T) were assessed, including measurements of the appropriate mRNA levels. Vehicle-treated age-matched animals served as controls. hCG suppressed serum LH in 2 days in adult rats from 0.85 +/- 0.16 to 0.04 +/- 0.01 microg/l, and in neonates from 0.59 +/- 0.29 to levels below 0.01 microg/l (p < 0.01 for both). This was accompanied at both ages by a 60% decrease in pituitary content of the LH beta-subunit mRNA (p < 0.01), but a decrease in the alpha-chain (40%, p < 0.05) occurred only in neonates. hCG increased serum PRL in adult rats in 8 days over 2-fold (p < 0.01); this did not occur in neonates. In neonates, BR increased the LH subunit mRNAs 2-fold in 8 days (p < 0.01) without a concomitant effect on serum LH; no BR effects on the LH parameters were seen in adult animals. BR decreased pituitary PRL protein and mRNA levels at both ages (p < 0.01-0.05), but serum PRL decreased only in the adults. The homologous down-regulation of testicular LHR (near 100%) was accompanied in adults by a 30% decrease in LHR mRNA (p < 0.05). Also BR at this age decreased LHR binding (75% in 8 days, p < 0.01), but in this case no change occurred in the cognate mRNA. hCG and BR slightly up-regulated in adults PRLR binding, but only the 2-day effect of BR was accompanied by a 60% increase in PRLR mRNA (p < 0.05). In neonates, both hCG and BR increased testicular LHR and PRLR mRNA levels (p < 0.01-0.05). In adult animals, both hCG and BR suppressed testicular and serum T levels after 8 days (40-70%, p < 0.01-0.05); only BR was inhibitory to T by 8 days in the neonates (p < 0.05). In conclusion, the homologous and heterologous regulatory effects of hCG and BR on LH, PRL and their testicular R levels were only partly explained by changes in steady-state levels of the respective mRNAs. In general, the autoregulatory effects on LHR and PRLR appeared to affect steady-state levels of cognate mRNAs, whereas heteroregulation predominately involved changes at the protein level. The responses of the neonatal pituitary-gonadal axis to hCG and/or BR differed greatly from those observed in the adult, indicating that the mechanisms involved in these regulatory events in adult animals are a result of gradual postnatal development.


PLOS ONE | 2012

Mouse testis development and function are differently regulated by follicle-stimulating hormone receptors signaling during fetal and prepubertal life.

Stéphanie Migrenne; Evelyne Moreau; Pirjo Pakarinen; Andrée Dierich; Jorge Merlet; René Habert; Chrystèle Racine

It is currently admitted that Follicle-Stimulating Hormone (FSH) is physiologically involved in the development and function of fetal/neonatal Sertoli cells in the rat but not the mouse. However, FSH is produced by both species from late fetal life onwards. We thus reinvestigated the role of FSH in mouse testis development at day 0 (birth) 6, 8 and 10 post-partum (dpp) by using mice that lack functional FSH receptors (FSH-R−/−). At birth, the number and proliferative index of Sertoli cells were significantly lower in FSH-R−/− mice than in wild type neonates. Claudin 11 mRNA expression also was significantly reduced in FSH-R−/− testes at 0 and 8 dpp, whereas the mRNA levels of other Sertoli cell markers (Transferrin and Desert hedgehog) were comparable in FSH-R−/− and wild type testes. Conversely, AMH mRNA and protein levels were higher at birth, comparable at 6 dpp and then significantly lower in FSH-R−/− testes at 8–10 dpp in FSH-R−/− mice than in controls. Although the plasma concentration of LH and the number of Leydig cells were similar in FSH-R−/− and control (wild type), testosterone concentration and P450c17 mRNA expression were significantly increased in FSH-R−/− testes at birth. Conversely, at 10 dpp when adult Leydig cells appear, expression of the steroidogenic genes P450scc, P450c17 and StAR was lower in FSH-R−/− testes than in controls. In conclusion, our results show that 1) like in the rat, signaling via FSH-R controls Sertoli cell development and function during late fetal life in the mouse as well; 2) paracrine factors produced by Sertoli cells are involved in the FSH-R-dependent regulation of the functions of fetal Leydig cells in late fetal life; and 3) the role of FSH-R signaling changes during the prepubertal period.


Biology of Reproduction | 2010

Changes in Gene Expression in Somatic Cells of Rat Testes Resulting from Hormonal Modulation and Radiation-Induced Germ Cell Depletion

Wei Zhou; Olga Bolden-Tiller; Gunapala Shetty; Shan H. Shao; Connie C. Weng; Pirjo Pakarinen; Zhilin Liu; David N. Stivers; Marvin L. Meistrich

Abstract Although gonadotropins and androgen are required for normal spermatogenesis and both testosterone and follicle-stimulating hormone (FSH) are responsible for the inhibition of spermatogonial differentiation that occurs in irradiated rats, it has been difficult to identify the specific genes involved. To study specific hormonally regulated changes in somatic cell gene expression in the testis that may be involved in these processes, without the complication of changing populations of germ cells, we used irradiated LBNF1 rats, the testes of which contain almost exclusively somatic cells except for a few type A spermatogonia. Three different groups of these rats were treated with various combinations of gonadotropin-releasing hormone antagonist, an androgen receptor antagonist (flutamide), testosterone, and FSH, and we compared the gene expression levels 2 wk later to those of irradiated-only rats by microarray analysis. By dividing the gene expression patterns into three major patterns and 11 subpatterns, we successfully distinguished, in a single study, the genes that were specifically regulated by testosterone, by luteinizing hormone (LH), and by FSH from the large number of genes that were not hormonally regulated in the testis. We found that hormones produced more dramatic upregulation than downregulation of gene expression: Testosterone had the strongest upregulatory effect, LH had a modest but appreciable upregulatory effect, and FSH had a minor upregulatory effect. We also separately identified the somatic cell genes that were chronically upregulated by irradiation. Thus, the present study identified gene expression changes that may be responsible for hormonal action on somatic cells to support normal spermatogenesis and the hormone-mediated block in spermatogonial development after irradiation.

Collaboration


Dive into the Pirjo Pakarinen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Connie C. Weng

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gunapala Shetty

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge