Pisin Chen
National Taiwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pisin Chen.
General Relativity and Gravitation | 2001
Ronald J. Adler; Pisin Chen; David I. Santiago
In the current standard viewpoint small black holes are believed to emit black body radiation at the Hawking temperature, at least until they approach Planck size, after which their fate is open to conjecture. A cogent argument against the existence of remnants is that, since no evident quantum number prevents it, black holes should radiate completely away to photons and other ordinary stable particles and vacuum, like any unstable quantum system. Here we argue the contrary, that the generalized uncertainty principle may prevent their total evaporation in exactly the same way that the uncertainty principle prevents the hydrogen atom from total collapse: the collapse is prevented, not by symmetry, but by dynamics, as a minimum size and mass are approached.
Physical Review Letters | 2007
P. Gorham; S. W. Barwick; J. J. Beatty; D. Besson; W. R. Binns; Chuan-Hua Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; Michael A. DuVernois; R. C. Field; D. Goldstein; A. Goodhue; C. Hast; C. L. Hebert; S. Hoover; M. H. Israel; J. Kowalski; J. G. Learned; Kurt Liewer; J. T. Link; Elizabeth R. Lusczek; S. Matsuno; B. C. Mercurio; C. Miki; P. Miočinović; J. W. Nam; C. J. Naudet; J. Ng
We report on observations of coherent, impulsive radio Cherenkov radiation from electromagnetic showers in solid ice. This is the first observation of the Askaryan effect in ice. As part of the complete validation process for the ANITA experiment, we performed an experiment at the Stanford Linear Accelerator Center in June 2006 using a 7.5 metric ton ice target. We measure for the first time the large-scale angular dependence of the radiation pattern, a major factor in determining the solid-angle acceptance of ultrahigh-energy neutrino detectors.
arXiv: General Relativity and Quantum Cosmology | 2003
Pisin Chen; Ronald J. Adler
We argue that, when the gravity effect is included, the generalized uncertainty principle (GUP) may prevent black holes from total evaporation in a similar way that the standard uncertainty principle prevents the hydrogen atom from total collapse. Specifically we invoke the GUP to obtain a modified Hawking temperature, which indicates that there should exist non-radiating remnants (BHR) of about Planck mass. BHRs are an attractive candidate for cold dark matter. We investigate an alternative cosmology in which primordial BHRs are the primary source of dark matter.
Astroparticle Physics | 2009
P. Gorham; P. Allison; S. W. Barwick; J. J. Beatty; D. Besson; W. R. Binns; Chuan-Hua Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; Michael A. DuVernois; R. C. Field; D. Goldstein; A. Goodhue; C. Hast; C. L. Hebert; S. Hoover; M. H. Israel; J. Kowalski; J. G. Learned; Kurt Liewer; J. T. Link; Elizabeth R. Lusczek; S. Matsuno; B. C. Mercurio; C. Miki; P. Miočinović; J. W. Nam; C. J. Naudet
Abstract We present a comprehensive report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long-duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity.
Physical Review Letters | 2009
P. Gorham; Allison P; S. W. Barwick; J. J. Beatty; D. Besson; W. R. Binns; Chun Hsiung Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; Michael A. DuVernois; R. C. Field; D. Goldstein; A. Goodhue; C. Hast; Hebert Cl; S. Hoover; M. H. Israel; Kowalski J; J. G. Learned; Kurt Liewer; Link Jt; Elizabeth R. Lusczek; Matsuno S; B. C. Mercurio; Christian Miki; Miocinović P; J. W. Nam; C. J. Naudet
We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E(nu) approximately 3 x 10(18) eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.
Physical Review Letters | 2010
S. Hoover; Nam J; P. Gorham; Grashorn E; P. Allison; S. W. Barwick; J. J. Beatty; K. Belov; D. Besson; W. R. Binns; C.T. Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; Michael A. DuVernois; R. C. Field; D. Goldstein; Vieregg Ag; C. Hast; M. H. Israel; A. Javaid; J. Kowalski; J. G. Learned; Kurt Liewer; J. T. Link; Elizabeth R. Lusczek; S. Matsuno; B. C. Mercurio; C. Miki
We report the observation of 16 cosmic ray events with a mean energy of 1.5 × 10¹⁹ eV via radio pulses originating from the interaction of the cosmic ray air shower with the Antarctic geomagnetic field, a process known as geosynchrotron emission. We present measurements in the 300-900 MHz range, which are the first self-triggered, first ultrawide band, first far-field, and the highest energy sample of cosmic ray events collected with the radio technique. Their properties are inconsistent with current ground-based geosynchrotron models. The emission is 100% polarized in the plane perpendicular to the projected geomagnetic field. Fourteen events are seen to have a phase inversion due to reflection of the radio beam off the ice surface, and two additional events are seen directly from above the horizon. Based on a likelihood analysis, we estimate angular pointing precision of order 2° for the event arrival directions.
Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366) | 1999
Pisin Chen
The continued demand for higher beam energies, luminosities, and brightness, induces increasing number of beam phenomena that involve quantum effects. In this paper we review the various quantum aspects of beam physics, with emphasis on their recent advances. These include quantum effects in beam dynamics, electron-photon interaction, beam phenomena under strong fields, fundamental physics under violent acceleration, and quantum methodology in beam physics. We conclude with a future outlook of this very exciting new field by the name quantum beam physics.
Physics Reports | 2015
Pisin Chen; Yen Chin Ong; Dong-han Yeom
Abstract Forty years after the discovery of Hawking radiation, its exact nature remains elusive. If Hawking radiation does not carry any information out from the ever shrinking black hole, it seems that unitarity is violated once the black hole completely evaporates. On the other hand, attempts to recover information via quantum entanglement lead to the firewall controversy. Amid the confusions, the possibility that black hole evaporation stops with a “remnant” has remained unpopular and is often dismissed due to some “undesired properties” of such an object. Nevertheless, as in any scientific debate, the pros and cons of any proposal must be carefully scrutinized. We fill in the void of the literature by providing a timely review of various types of black hole remnants, and provide some new thoughts regarding the challenges that black hole remnants face in the context of the information loss paradox and its latest incarnation, namely the firewall controversy. The importance of understanding the role of curvature singularity is also emphasized, after all there remains a possibility that the singularity cannot be cured even by quantum gravity. In this context a black hole remnant conveniently serves as a cosmic censor. We conclude that a remnant remains a possible end state of Hawking evaporation, and if it contains large interior geometry, may help to ameliorate the information loss paradox and the firewall controversy. We hope that this will raise some interests in the community to investigate remnants more critically but also more thoroughly.
Physical Review Letters | 2002
Pisin Chen; T. Tajima; Yoshiyuki Takahashi
A cosmic acceleration mechanism is introduced which is based on the wakefields excited by the Alfvén shocks in a relativistically flowing plasma. We show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f(epsilon) proportional, variant 1/epsilon(2). As an example, we discuss the possible production in the atmosphere of gamma ray bursts of ultrahigh-energy cosmic rays (UHECR) exceeding the Greisen-Zatsepin-Kuzmin cutoff. The estimated event rate in our model agrees with that from UHECR observations.
Physical Review D | 2013
Yen Chin Ong; Keisuke Izumi; James M. Nester; Pisin Chen
Teleparallel theories of gravity have a long history. They include a special case referred to as the Teleparallel Equivalent of General Relativity (TEGR, aka GR