Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piyali Chatterjee is active.

Publication


Featured researches published by Piyali Chatterjee.


Cardiovascular Research | 2013

Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension

Hoanglan Nguyen; Valorie L. Chiasson; Piyali Chatterjee; Shelley Kopriva; Kristina J. Young; Brett M. Mitchell

AIMS Elevated levels of pro-inflammatory cytokine interleukin-17A (IL-17) are associated with hypertensive autoimmune diseases; however, the connection between IL-17 and hypertension is unknown. We hypothesized that IL-17 increases blood pressure by decreasing endothelial nitric oxide production. METHODS AND RESULTS Acute treatment of endothelial cells with IL-17 caused a significant increase in phosphorylation of the inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495). Of the kinases known to phosphorylate eNOS Thr495, only inhibition of Rho-kinase prevented the IL-17-induced increase. IL-17 caused a threefold increase in the Rho-kinase activator RhoA, and this was prevented by an IL-17 neutralizing antibody. In isolated mouse aortas, IL-17 significantly increased eNOS Thr495 phosphorylation, induced RhoA expression, and decreased NO-dependent relaxation responses, all of which were prevented by either an IL-17 neutralizing antibody or inhibition of Rho-kinase. In mice, IL-17 treatment for 1 week significantly increased systolic blood pressure and this was associated with decreased aortic NO-dependent relaxation responses, increased eNOS Thr495 phosphorylation, and increased RhoA expression. Inhibition of Rho-kinase prevented the hypertension caused by IL-17. CONCLUSION These data demonstrate that IL-17 activates RhoA/Rho-kinase leading to endothelial dysfunction and hypertension. Inhibitors of IL-17 or Rho-kinase may prove useful as anti-hypertensive drugs in IL-17-associated autoimmune diseases.


Frontiers in Immunology | 2014

Regulation of the Anti-Inflammatory Cytokines Interleukin-4 and Interleukin-10 during Pregnancy.

Piyali Chatterjee; Valorie L. Chiasson; Kelsey R. Bounds; Brett M. Mitchell

Inflammation mediated by both innate and adaptive immune cells is necessary for several important processes during pregnancy. Pro-inflammatory immune cell activation plays a critical role in embryo implantation, placentation, and parturition; however dysregulation of these cells can lead to detrimental pregnancy outcomes including spontaneous abortion, fetal growth restriction, maternal pathology including hypertensive disorders, or fetal and maternal death. The resolution of inflammation plays an important role throughout pregnancy and is largely mediated by immune cells that produce interleukin (IL)-4 and IL-10. The temporal and spatial aspects of reducing inflammation during pregnancy represent a complex process that if not functioning optimally can lead to persistent inflammation and pregnancy complications. In this review, we examine how immune cells that produce IL-4 and IL-10 are regulated throughout pregnancy as well as the effects that reduced IL-4 and IL-10 signaling has on fetal and maternal physiology.


PLOS ONE | 2012

Placental Toll-Like Receptor 3 and Toll-Like Receptor 7/8 Activation Contributes to Preeclampsia in Humans and Mice

Piyali Chatterjee; Laura Weaver; Karen M. Doersch; Shelley Kopriva; Valorie L. Chiasson; Samantha J. Allen; Ajay M. Narayanan; Kristina J. Young; Kathleen A. Jones; Thomas J. Kuehl; Brett M. Mitchell

Preeclampsia (PE) is a pregnancy-specific hypertensive syndrome characterized by excessive maternal immune system activation, inflammation, and endothelial dysfunction. Toll-like receptor (TLR) 3 activation by double-stranded RNA (dsRNA) and TLR7/8 activation by single-stranded RNA (ssRNA) expressed by viruses and/or released from necrotic cells initiates a pro-inflammatory immune response; however it is unknown whether viral/endogenous RNA is a key initiating signal that contributes to the development of PE. We hypothesized that TLR3/7/8 activation will be evident in placentas of women with PE, and sufficient to induce PE-like symptoms in mice. Placental immunoreactivity and mRNA levels of TLR3, TLR7, and TLR8 were increased significantly in women with PE compared to normotensive women. Treatment of human trophoblasts with the TLR3 agonist polyinosine-polycytidylic acid (poly I:C), the TLR7-specific agonist imiquimod (R-837), or the TLR7/8 agonist CLO97 significantly increased TLR3/7/8 levels. Treatment of mice with poly I:C, R-837, or CLO97 caused pregnancy-dependent hypertension, endothelial dysfunction, splenomegaly, and placental inflammation. These data demonstrate that RNA-mediated activation of TLR3 and TLR7/8 plays a key role in the development of PE.


Hypertension | 2011

Interleukin 10 Deficiency Exacerbates Toll-Like Receptor 3–Induced Preeclampsia-Like Symptoms in Mice

Piyali Chatterjee; Valorie L. Chiasson; Shelley Kopriva; Kristina J. Young; Victor Chatterjee; Kathleen A. Jones; Brett M. Mitchell

Preeclampsia may result from overactivation of the maternal immune system and is characterized by endothelial dysfunction and excessive inflammation. Given the importance of maternal immune system regulation and anti-inflammatory cytokines in normotensive pregnancies, we hypothesized that maternal immune system activation via Toll-like receptor 3 during pregnancy would cause preeclampsia-like symptoms in mice, which would be made worse by deficiency of the anti-inflammatory cytokine interleukin 10. The Toll-like receptor 3 agonist polyinosine-polycytidylic acid (poly I:C) caused hypertension, endothelial dysfunction, and proteinuria in mice only when pregnant. In the absence of poly I:C, pregnant interleukin 10 knockout mice exhibited a significant increase in systolic blood pressure, endothelial dysfunction, and serum proinflammatory cytokines, as well as aortic and placental platelet-endothelial cell adhesion molecule expression compared with pregnant wild-type mice. Deficiency of interleukin 10 further augmented these measures in poly I:C–treated pregnant mice. In addition, sera from poly I:C-treated pregnant wild-type mice significantly decreased relaxation responses and increased platelet-endothelial cell adhesion molecule expression in isolated aortas from nonpregnant wild-type mice, and these effects were augmented by sera from poly I:C-treated interleukin 10 knockout mice. Coincubation with recombinant interleukin 10 normalized relaxation responses and platelet-endothelial cell adhesion molecule expression in all of the groups. Collectively, Toll-like receptor 3 activation during pregnancy causes preeclampsia-like symptoms, which are exacerbated by the absence of interleukin 10. Exogenous interleukin 10 treatment had beneficial effects on endothelial function and may be beneficial in women with preeclampsia.


Hypertension | 2011

Fk506 Binding Protein 12 Deficiency in Endothelial and Hematopoietic Cells Decreases Regulatory T Cells and Causes Hypertension

Valorie L. Chiasson; Deepa Talreja; Kristina J. Young; Piyali Chatterjee; Amy K.L. Banes-Berceli; Brett M. Mitchell

Patients treated with the immunosuppressive drug tacrolimus (FK506), which binds FK506 binding protein 12 (FKBP12) and then inhibits the calcium-dependent phosphatase calcineurin, exhibit decreased regulatory T cells, endothelial dysfunction, and hypertension; however, the mechanisms and whether altered T-cell polarization play a role are unknown. Tacrolimus treatment of mice for 1 week dose-dependently decreased splenic CD4+/FoxP3+ (regulatory T cells), increased splenic CD4+/IL-17+ (T-helper 17) cells, and caused endothelial dysfunction and hypertension. To determine the mechanisms, we crossed floxed FKBP12 mice with Tie2-Cre mice to generate offspring lacking FKBP12 in endothelial and hematopoietic cells only (FKBP12EC knockout [KO]). Given the role of FKBP12 in inhibiting transforming growth factor-&bgr; receptor activation, Tie2-Cre–mediated deletion of FKBP12 increased transforming growth factor-&bgr; receptor activation and SMAD2/3 signaling. FKBP12EC KO mice exhibited increased vascular expression of genes and proteins related to endothelial cell activation and inflammation. Serum levels of the proinflammatory cytokines IL-2, IL-6, interferon-&ggr;, IL-17a, IL-21, and IL-23 were increased significantly, suggesting a T-helper 17 cell-mediated inflammatory state. Flow cytometry studies confirmed this, because splenic levels of CD4+/IL-17+ cells were increased significantly, whereas CD4+/FoxP3+ cells were decreased in FKBP12EC KO mice. Furthermore, spleens from FKBP12EC KO mice showed increased signal transducer and activator of transcription 3 activation, involved in T-helper 17 cell induction, and decreased signal transducer and activator of transcription 5 activation, involved in regulatory T-cell induction. FKBP12EC KO mice also exhibited endothelial dysfunction and hypertension. These data suggest that tacrolimus, through its activation of transforming growth factor-&bgr; receptors in endothelial and hematopoietic cells, may cause endothelial dysfunction and hypertension by activating endothelial cells, reducing regulatory T cells, and increasing T-helper 17 cell polarization and inflammation.


PLOS ONE | 2013

TLR3-Induced Placental miR-210 Down-Regulates the STAT6/Interleukin-4 Pathway

Shelley Kopriva; Valorie L. Chiasson; Brett M. Mitchell; Piyali Chatterjee

Several clinical studies have reported increased placental miR-210 expression in women with PE compared to normotensive women, but whether miR-210 plays a role in the etiology of PE is unknown. We reported that activation of TLR3 produces the PE-like symptoms of hypertension, endothelial dysfunction, and proteinuria in mice only when pregnant, but whether TLR3 activation in pregnant mice and human cytotrophoblasts (CTBs) increases miR-210 and modulates its targets related to inflammation are unknown. Placental miR-210 levels were increased significantly in pregnant mice treated with the TLR3 agonist poly I:C (P-PIC). Both HIF-1α and NF-κBp50, known to bind the miR-210 promoter and induce its expression, were also increased significantly in placentas of P-PIC mice. Target identification algorithms and gene ontology predicted STAT6 as an inflammation-related target of miR-210 and STAT6 was decreased significantly in placentas of P-PIC mice. IL-4, which is regulated by STAT6 and increases during normotensive pregnancy, failed to increase in serum of P-PIC mice. P-PIC TLR3 KO mice did not develop hypertension and placental HIF-1α, NF-κBp50, miR-210, STAT6, and IL-4 levels were unchanged. To determine the placental etiology, treatment of human CTBs with poly I:C significantly increased HIF-1α, NF-κBp50, and miR-210 levels and decreased STAT6 and IL-4 levels. Overexpression of miR-210 in CTBs decreased STAT6 and IL-4 while inhibition of miR-210 increased STAT6 and IL-4. These findings demonstrate that TLR3 activation induces placental miR-210 via HIF-1α and NF-κBp50 leading to decreased STAT6 and IL-4 levels and this may contribute to the development of PE.


Hypertension | 2011

Pin1 Deficiency Causes Endothelial Dysfunction and Hypertension

Valorie L. Chiasson; Nidhi Munshi; Piyali Chatterjee; Kristina J. Young; Brett M. Mitchell

Pin1 is a peptidyl prolyl cis-trans isomerase that only binds to and isomerizes phosphorylated serine/threonine-proline motifs, inducing conformational changes that alter target protein function and phosphorylation. We have shown previously that deficiency of another peptidyl prolyl isomerase, FK506 binding protein 12/12.6, alters endothelial NO synthase phosphorylation and causes endothelial dysfunction and hypertension. Endothelial NO synthase contains the Pin1 binding sequence at (p)serine 116-proline 117 and phosphorylation of endothelial NO synthase serine 116 inhibits NO production; however, whether Pin1 deficiency alters vascular function and blood pressure is unknown. We hypothesized that Pin1 isomerizes p-endothelial NO synthase serine 116, which enables dephosphorylation and stimulates NO production. Immunoprecipitation of endothelial NO synthase and probing for Pin1 in rat aortic endothelial cells confirmed the interaction between the two. Pin1 knockdown via small interfering RNA or inhibition by juglone increased endothelial NO synthase serine 116 phosphorylation and prevented vascular endothelial growth factor–induced serine 116 dephosphorylation in endothelial cells. Acute treatment of isolated mouse aortas with juglone increased endothelial NO synthase serine 116 phosphorylation and decreased NO production and relaxation responses. Mice treated with juglone for 2 weeks, as well as Pin1 knockout mice, exhibited increased aortic endothelial NO synthase serine 116 phosphorylation, endothelial dysfunction, and hypertension. These data demonstrate that Pin1 binds endothelial NO synthase and enables dephosphorylation of serine 116, which increases NO production and endothelium-dependent dilation, leading to blood pressure maintenance.


Journal of Hypertension | 2013

Interleukin-4 deficiency induces mild preeclampsia in mice.

Piyali Chatterjee; Shelley Kopriva; Valorie L. Chiasson; Kristina J. Young; Richard Tobin; Karen Newell-Rogers; Brett M. Mitchell

Objective: Inflammation is necessary for successful pregnancy; however, excessive inflammation plays a central role in the development of the pregnancy-specific hypertensive disorder preeclampsia. Numerous anti-inflammatory cytokines are decreased in women with preeclampsia but the role of individual cytokines in blood pressure regulation during pregnancy is unknown. Therefore, we examined whether the lack of the potent anti-inflammatory cytokine interleukin-4 (IL-4) would be sufficient to elicit a preeclampsia-like syndrome in mice, and when coupled with immune system activation that these symptoms would be further augmented. Methods: Measures of splenic immune cells, placental inflammation, blood pressure, endothelial function, and urinary protein excretion were performed in pregnant IL-4-deficient mice as well as in pregnant IL-4-deficient mice treated with the Toll-like receptor 3 agonist polyinosinic:polycytidylic (poly I:C). Results: Pregnant IL-4-deficient mice exhibited altered splenic immune cell subsets, increased levels of pro-inflammatory cytokines, placental inflammation, mild hypertension, endothelial dysfunction, and proteinuria compared to pregnant control mice. Compared to pregnant control mice treated with poly I:C which exhibit preeclampsia-like symptoms, poly I:C-treated pregnant IL-4-deficient mice exhibited a further increase in pro-inflammatory cytokine levels, which was associated with augmented SBP and endothelial dysfunction. Conclusion: Collectively, these data show that the absence of IL-4 is sufficient to induce mild preeclampsia-like symptoms in mice due to excessive inflammation. Thus, the anti-inflammatory effects of IL-4 are important in preventing hypertension during pregnancy.


Clinical Science | 2016

Human placenta-derived stromal cells decrease inflammation, placental injury and blood pressure in hypertensive pregnant mice.

Piyali Chatterjee; Valorie L. Chiasson; Lena Pinzur; Shani Raveh; Eytan Abraham; Kathleen A. Jones; Kelsey R. Bounds; Racheli Ofir; Liat Flaishon; Ayelet Chajut; Brett M. Mitchell

Pre-eclampsia, the development of hypertension and proteinuria or end-organ damage during pregnancy, is a leading cause of both maternal and fetal morbidity and mortality, and there are no effective clinical treatments for pre-eclampsia aside from delivery. The development of pre-eclampsia is characterized by maladaptation of the maternal immune system, excessive inflammation and endothelial dysfunction. We have reported that detection of extracellular RNA by the Toll-like receptors (TLRs) 3 and 7 is a key initiating signal that contributes to the development of pre-eclampsia. PLacental eXpanded (PLX-PAD) cells are human placenta-derived, mesenchymal-like, adherent stromal cells that have anti-inflammatory, proangiogenic, cytoprotective and regenerative properties, secondary to paracrine secretion of various molecules in response to environmental stimulation. We hypothesized that PLX-PAD cells would reduce the associated inflammation and tissue damage and lower blood pressure in mice with pre-eclampsia induced by TLR3 or TLR7 activation. Injection of PLX-PAD cells on gestational day 14 significantly decreased systolic blood pressure by day 17 in TLR3-induced and TLR7-induced hypertensive mice (TLR3 144-111 mmHg; TLR7 145-106 mmHg; both P<0.05), and also normalized their elevated urinary protein:creatinine ratios (TLR3 5.68-3.72; TLR7 5.57-3.84; both P<0.05). On gestational day 17, aortic endothelium-dependent relaxation responses improved significantly in TLR3-induced and TLR7-induced hypertensive mice that received PLX-PAD cells on gestational day 14 (TLR3 35-65%; TLR7 37-63%; both P<0.05). In addition, markers of systemic inflammation and placental injury, increased markedly in both groups of TLR-induced hypertensive mice, were reduced by PLX-PAD cells. Importantly, PLX-PAD cell therapy had no effects on these measures in pregnant control mice or on the fetuses. These data demonstrate that PLX-PAD cell therapy can safely reverse pre-eclampsia-like features during pregnancy and have a potential therapeutic role in pre-eclampsia treatment.


Pharmacological Research | 2017

Toll-like receptor activation, vascular endothelial function, and hypertensive disorders of pregnancy

Dakshnapriya Balasubbramanian; Catalina A. Lopez Gelston; Brett M. Mitchell; Piyali Chatterjee

ABSTRACT Aberrant innate immune system activation in the mother contributes greatly to the development of hypertension during pregnancy. Numerous groups have elicited vascular inflammation, endothelial dysfunction, and hypertension in animals during gestation by directly activating Toll‐like receptors. Additionally, several experimental therapies that reduce pro‐inflammatory immune cells and cytokines restore vascular endothelial function and normalize blood pressure. This review will summarize the research demonstrating that an excessive maternal innate immune response is sufficient to cause vascular inflammation and endothelial dysfunction, which contributes to the development of hypertension during pregnancy. Dampening the vascular inflammation caused by immune responses may reduce the incidence and severity of hypertensive disorders of pregnancy.

Collaboration


Dive into the Piyali Chatterjee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel C. Jupiter

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge